OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 4 — Feb. 1, 2012
  • pp: A48–A58

Prototype development and field-test results of an adaptive multiresolution PANOPTES imaging architecture

Manjunath Somayaji, Marc P. Christensen, Esmaeil Faramarzi, Dinesh Rajan, Juha-Pekka Laine, Peter Sebelius, Arthur Zachai, Murali Chaparala, Gregory Blasche, Keith Baldwin, Babatunde Ogunfemi, and Domhnull Granquist-Fraser  »View Author Affiliations


Applied Optics, Vol. 51, Issue 4, pp. A48-A58 (2012)
http://dx.doi.org/10.1364/AO.51.000A48


View Full Text Article

Enhanced HTML    Acrobat PDF (1687 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design, development, and field-test results of a visible-band, folded, multiresolution, adaptive computational imaging system based on the Processing Arrays of Nyquist-limited Observations to Produce a Thin Electro-optic Sensor (PANOPTES) concept is presented. The architectural layout that enables this imager to be adaptive is described, and the control system that ensures reliable field-of-view steering for precision and accuracy in subpixel target registration is explained. A digital superresolution algorithm introduced to obtain high-resolution imagery from field tests conducted in both nighttime and daytime imaging conditions is discussed. The digital superresolution capability of this adaptive PANOPTES architecture is demonstrated via results in which resolution enhancement by a factor of 4 over the detector Nyquist limit is achieved.

© 2012 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(110.0110) Imaging systems : Imaging systems
(110.1758) Imaging systems : Computational imaging

History
Original Manuscript: October 3, 2011
Revised Manuscript: January 5, 2012
Manuscript Accepted: January 10, 2012
Published: January 27, 2012

Citation
Manjunath Somayaji, Marc P. Christensen, Esmaeil Faramarzi, Dinesh Rajan, Juha-Pekka Laine, Peter Sebelius, Arthur Zachai, Murali Chaparala, Gregory Blasche, Keith Baldwin, Babatunde Ogunfemi, and Domhnull Granquist-Fraser, "Prototype development and field-test results of an adaptive multiresolution PANOPTES imaging architecture," Appl. Opt. 51, A48-A58 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-4-A48


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Tanida, T. Kumagai, K. Yamada, and S. Miyatake, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001). [CrossRef]
  2. P. M. Shankar, W. C. Hasenplaugh, R. L. Morrison, R. A. Stack, and M. A. Neifeld, “Multiaperture imaging,” Appl. Opt. 45, 2871–2883 (2006). [CrossRef]
  3. J. W. Duparré, and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspiration Biomemetics 1, R1–R16(2006). [CrossRef]
  4. E. J. Tremblay, R. A. Stack, R. L. Morrison, and J. E. Ford, “Ultrathin cameras using annular folded optics,” Appl. Opt. 46, 463–471 (2007). [CrossRef]
  5. R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: integrated computational array imaging technology,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA1.
  6. R. Athale, D. M. Healy, D. J. Brady, and M. A. Neifeld, “Reinventing the camera,” Opt. Photon. News 19, 32–37 (2008). [CrossRef]
  7. M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. Te Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47, B1–B10 (2008). [CrossRef]
  8. A. Portnoy, N. Pitsianis, X. Sun, D. Brady, R. Gibbons, A. Silver, R. T. Kolste, C. Chen, T. Dillon, and D. Prather, “Design and characterization of thin multiple aperture infrared cameras,” Appl. Opt. 48, 2115–2126 (2009). [CrossRef]
  9. P. B. Fellgett and E. H. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. A 247, 369–407 (1955). [CrossRef]
  10. F. O. Huck, C. L. Fales, and Z. Rahman, “An information theory of visual communication,” Philos. Trans. R. Soc. A 354, 2193–2248 (1996). [CrossRef]
  11. V. R. Bhakta and M. P. Christensen, “Performance metric for multi-aperture computational imaging sensor,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, Technical Digest (Optical Society of America, 2005), paper CMA5.
  12. M. P. Christensen, V. R. Bhakta, D. Rajan, T. Mirani, S. C. Douglas, S. L. Wood, and M. W. Haney, “Adaptive flat multiresolution multiplexed computational imaging architecture utilizing micromirror arrays to steer subimager field of view,” Appl. Opt. 45, 2884–2892 (2006). [CrossRef]
  13. P. Milojkovic, J. Gill, D. Frattin, K. Coyle, K. Haack, S. Myhr, D. Rajan, S. Douglas, P. Papamichalis, M. Somayaji, M. P. Christensen, and K. Krapels, “Multichannel, agile, computationally enhanced camera based on PANOPTES architecture,” in Computational Optical Sensing and Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CTuB4.
  14. V. R. Bhakta, M. Somayaji, S. C. Douglas, and M. P. Christensen, “Experimentally validated computational imaging with adaptive multiaperture folded architecture,” Appl. Opt. 49, B51–B58 (2010). [CrossRef]
  15. M. Somayaji, M. P. Christensen, E. Faramarzi, D. Rajan, J. Laine, D. Granquist-Fraser, P. Sebelius, A. Zachai, M. V. Chaparala, G. Blasche, K. B. Baldwin, and B. Ogunfemi, “Field test of PANOPTES-based adaptive computational imaging system prototype,” in Computational Optical Sensing and Imaging, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CPDP3.
  16. I. Sinharoy, S. C. Douglas, D. Rajan, and M. P. Christensen, “Model-based region-of-interest estimation for adaptive resource allocation in multi-aperture imaging systems,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008) (IEEE, 2008), pp. 1961–1964.
  17. R. E. Hopkins, “Mirror and prism systems,” in Applied Optics and Optical Engineering, R. Kingslake, ed. (Academic, 1965), Vol. III, Chap. 7, pp. 269–308.
  18. E. Faramarzi, V. Bhakta, D. Rajan, and M. Christensen, “Super resolution results in PANOPTES, an adaptive multi-aperture folded architecture,” in Proceedings of IEEE International Conference on Image Processing (ICIP 2010) (IEEE, 2010), pp. 2833–2836.
  19. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003). [CrossRef]
  20. D. Keren, S. Peleg, and R. Brada, “Image sequence enhancement using sub-pixel displacements,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1988) (IEEE, 1988), pp. 742–746.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited