OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 5 — Feb. 10, 2012
  • pp: 568–576

Design of an optofluidic biosensor using the slow-light effect in photonic crystal structures

F. Hosseinibalam, S. Hassanzadeh, A. Ebnali-Heidari, and C. Karnutsch  »View Author Affiliations


Applied Optics, Vol. 51, Issue 5, pp. 568-576 (2012)
http://dx.doi.org/10.1364/AO.51.000568


View Full Text Article

Enhanced HTML    Acrobat PDF (1126 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The authors propose a biosensor architecture based on the selective infiltration of photonic crystal (PhC) structures. The proposed sensor consists of a ring cavity coupled to an optofluidic slow-light waveguide in a PhC platform. A high potential sensitivity of 293nm/refractive index unit is numerically demonstrated, while maintaining an ultracompact footprint.

© 2012 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: June 21, 2011
Revised Manuscript: August 31, 2011
Manuscript Accepted: October 19, 2011
Published: February 7, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
F. Hosseinibalam, S. Hassanzadeh, A. Ebnali-Heidari, and C. Karnutsch, "Design of an optofluidic biosensor using the slow-light effect in photonic crystal structures," Appl. Opt. 51, 568-576 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-5-568


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008). [CrossRef]
  2. W. Bogaers, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, “Large-scale production techniques for photonic nanostructures,” Proc. SPIE 5225, 101–112 (2003). [CrossRef]
  3. O. Levi, W. Suh, M. M. Lee, J. Zhang, S. R. J. Brueck, S. Fan, and J. S. Harris, “Guided-resonance in photonic crystal slabs for biosensing applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuK1.
  4. M. Askari, S. Yegnanarayanan, and A. Adibi, “Photonic crystal waveguide based sensors,” Proc. SPIE 7946, 794614 (2011). [CrossRef]
  5. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004). [CrossRef]
  6. T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008). [CrossRef]
  7. T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008). [CrossRef]
  8. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  9. I. M. White and X. D. Fan, “On the performance quantification of resonance refractive index sensors,” Opt. Express 16, 1020–1028 (2008). [CrossRef]
  10. N. Skivsen, A. Tetu, M. Kristensen, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15, 3169–3176 (2007). [CrossRef]
  11. J. Garcia-Ruperez, V. Toccafondo, M. J. Banuls, J. G. Castello, A. Griol, S. Peransi-Llopis, and A. Maquierira, “Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light slow light regime,” Opt. Express 18, 24276–24286 (2010). [CrossRef]
  12. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals,” Microfluid. Nanofluid. 4, 117 (2008). [CrossRef]
  13. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006). [CrossRef]
  14. L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007). [CrossRef]
  15. V. Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photon. Nanostr. Fundam. Appl. 2, 199–206 (2004). [CrossRef]
  16. J. P. Hugonin, P. Lalanne, T. P. White, and T. E. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32, 2638–2640 (2007). [CrossRef]
  17. P. Pottier, M. Gnan, and R. De La Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15, 6569–6575 (2007). [CrossRef]
  18. X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001). [CrossRef]
  19. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021 (2001). [CrossRef]
  20. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]
  21. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007). [CrossRef]
  22. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009). [CrossRef]
  23. G. J. Pedersen, S. S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78, 153101 (2008). [CrossRef]
  24. A. A. Krokhin and P. Halevi, “Influence of weak dissipation on photonic band structure of periodic composites,” Phys. Rev. B 53, 1205–1214 (1996). [CrossRef]
  25. K. Nagahara, M. Morifuji, and M. Kondow, “Optical coupling between a cavity mode and a waveguide in a two-dimensional photonic crystal,” Photon. Nanostr. Fundam. Appl. 9, 261–268 (2011). [CrossRef]
  26. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009). [CrossRef]
  27. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31, 59–61 (2006). [CrossRef]
  28. U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33, 2206–2208 (2008). [CrossRef]
  29. C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16, 15887–15896 (2008). [CrossRef]
  30. M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett. 32, 3284–3286 (2007). [CrossRef]
  31. D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24, 3688–3692 (2009). [CrossRef]
  32. S. H. Kwon, T. Sunner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709–11717 (2008). [CrossRef]
  33. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited