OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 5 — Feb. 10, 2012
  • pp: 604–609

Ultrafast laser-induced microstructure/nanostructure replication and optical properties

Paul O. Caffrey, Barada K. Nayak, and Mool C. Gupta  »View Author Affiliations

Applied Optics, Vol. 51, Issue 5, pp. 604-609 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (792 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper demonstrates replication of ultrafast laser-induced micro/nano surface textures on poly(dimethylsiloxane) (PDMS). The surface texture replication process reduces the processing steps for microtexturing while improving light trapping. Two methods are demonstrated to replicate surface microtexture, a simple mold method and an embossing method. The laser microtextured silicon and titanium surfaces with micro to nanoscale features have been successfully replicated. Optical characterization of the replicated microtextured PDMS surfaces is performed and the results agree with model predictions. The replicated microtextured PDMS film is applied on a silicon surface and optical characterization shows that surface reflectance can be suppressed over 55% compared to the control value.

© 2012 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.5470) Materials : Polymers
(220.4000) Optical design and fabrication : Microstructure fabrication
(310.1210) Thin films : Antireflection coatings
(320.7090) Ultrafast optics : Ultrafast lasers
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optical Design and Fabrication

Original Manuscript: August 22, 2011
Revised Manuscript: November 6, 2011
Manuscript Accepted: November 7, 2011
Published: February 7, 2012

Paul O. Caffrey, Barada K. Nayak, and Mool C. Gupta, "Ultrafast laser-induced microstructure/nanostructure replication and optical properties," Appl. Opt. 51, 604-609 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. Martin, K. O. Wessendorf, C. T. Gebert, G. C. Frye, R. W. Cernosek, L. Casaus, and M. A. Mitchell, “Measuring liquid properties with smooth- and textured-surface resonators,” in Proceedings of the IEEE International Symposium on Frequency Control (IEEE, 1993), Vol. 47, pp. 603–608.
  2. J. Zhao, A. Wang, P. Campbell, and M. A. Green, “22.7% efficient silicon photovoltaic modules with textured front surface,” IEEE Trans. Electron Devices 46, 1495–1497 (1999). [CrossRef]
  3. J. M. Gee, H. L. Tardy, T. D. Hund, R. Gordon, and H. Liang, “Reflectance control for multicrystalline-silicon photovoltaic modules using textured-dielectric coatings,” in IEEE Photovoltaic Specialists Conference (IEEE, 1994), Vol. 2, pp. 1274–1277.
  4. M. X. Su, A. J. Fleischman, S. Roy, B. A. Banks, S. K. Miller, and R. J. Midura, “Osteoblast attachment to a textured surface in the absence of exogenous adhesion proteins,” IEEE Trans. Nanobiosci. 2, 287–294 (2003). [CrossRef]
  5. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987). [CrossRef]
  6. J. M. Gee, W. K. Schubert, H. L. Tardy, T. D. Hund, and G. Robison, “The effect of encapsulation on the reflectance of photovoltaic modules using textured multicrystalline-silicon solar cells,” in IEEE Photovoltaic Specialists Conference (IEEE, 1994), Vol. 2, pp. 1555–1558.
  7. D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Solar Energy 76, 277–283 (2004). [CrossRef]
  8. T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and H. Okamoto, “Influence of substrate texture on microstructure and photovoltaic performances of thin film polycrystalline silicon solar cells,” J. Non-Cryst. Solids 299, 1152–1156 (2002). [CrossRef]
  9. V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94, 2251–2257 (2010). [CrossRef]
  10. J. Yoo, G. Yu, and J. Yi, “Black surface structures for crystalline silicon solar cells,” Mater. Sci. Eng. B 159, 333–337 (2009). [CrossRef]
  11. Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999). [CrossRef]
  12. P. N. Vinod and M. Lal, “Surface and optical characterization of the porous silicon textured surface,” J. Mater. Sci. Mater. Electron. 16, 1–6 (2005). [CrossRef]
  13. P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006). [CrossRef]
  14. W. Sparber, O. Schultz, D. Birol, G. Emanuel, R. Preu, A. Poddey, and D. Borchert, “Comparison of texturing methods for monocrystalline silicon solar cells using KOH and Na2CO3,” in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), Vol. 2, pp. 1372–1375.
  15. M. Tucci, R. De Rosa, and F. Roca, “CF4/O2 dry etching of textured crystalline silicon surface in a-Si:H/c-Si heterojunction for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 69, 175–185 (2001). [CrossRef]
  16. J. Y. Chen, W.-L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express 19, 14411–14419 (2011). [CrossRef]
  17. M. Nam, J. Lee, and K.-K. Lee, “Efficiency improvement of solar cells by importing microdome-shaped anti-reflective structures as a surface protection layer,” Microelectron. Eng. 88, 2314–2318 (2011). [CrossRef]
  18. J. Escarré, K. Söderström, C. Battaglia, F.-J. Haug, and C. Ballif, “High fidelity transfer of nanometric random textures by UV embossing for thin film solar cells applications,” Sol. Energy Mater. Sol. Cells 95, 881–886 (2011). [CrossRef]
  19. N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, and H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovoltaics 19, 134–140 (2011). [CrossRef]
  20. J. Y. Chen, W.-L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express 19, 14411–14419 (2011). [CrossRef]
  21. T. Yao, P. Wu, T. Wu, C. Cheng, and S. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88, 2908–2912 (2011). [CrossRef]
  22. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium by femtosecond laser irradiation,” Appl. Phys. A 90, 399–402 (2008). [CrossRef]
  23. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci. 253, 6580–6583 (2007). [CrossRef]
  24. B. K. Nayak and M. C. Gupta, “Self-organized micro/nanostructures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010). [CrossRef]
  25. B. Sopori, J. Madjdpour, Y. Zhang, W. Chen, S. Guha, J. Yang, A. Banerjee, and S. Hegedus, “Optical modeling of a-Si solar cells,” NREL/CP-520-25783, National Renewable Energy Laboratory, 1999.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited