OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 6 — Feb. 20, 2012
  • pp: 713–719

High-efficiency holograms fixed in lithium niobate after recording using a digital fringe stabilization system

Luis Arizmendi and Emilio J. Ambite  »View Author Affiliations

Applied Optics, Vol. 51, Issue 6, pp. 713-719 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (357 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We used a digital feedback control loop system to produce reproducible fixed volume transmission holograms of high diffraction efficiency. Different strategies were investigated to obtain holograms of good quality and the highest refractive index modulation depth. Using this control system, we were able to record holograms with stationary fringes. Additionally to using the stationary fringe recording, a double recording-fixing schedule resulted in being the most appropriate one to produce reproducible holograms of better characteristics. This strategy is discussed and compared with other already established ones.

© 2012 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(090.7330) Holography : Volume gratings
(160.5320) Materials : Photorefractive materials
(230.1950) Optical devices : Diffraction gratings

ToC Category:

Original Manuscript: October 5, 2011
Revised Manuscript: November 16, 2011
Manuscript Accepted: November 16, 2011
Published: February 14, 2012

Luis Arizmendi and Emilio J. Ambite, "High-efficiency holograms fixed in lithium niobate after recording using a digital fringe stabilization system," Appl. Opt. 51, 713-719 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999). [CrossRef]
  2. L. Cao and C. Gu, “Matched spectral filter based on reflection holograms for analyte identification,” Appl. Opt. 48, 6973–6979 (2009). [CrossRef]
  3. V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1082 (1994). [CrossRef]
  4. B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001). [CrossRef]
  5. I. Nee, O. Beyer, M. Muller, and K. Buse, “Multichannel wavelength-division multiplexing with thermally fixed Bragg gratings in photorefractive lithium niobate crystals,” J. Opt. Soc. Am. B 20, 1593–1602 (2003). [CrossRef]
  6. Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 µm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006). [CrossRef]
  7. D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007). [CrossRef]
  8. E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17, 1140–1146 (2000). [CrossRef]
  9. M. Carrascosa, L. Arizmendi, and J. M. Cabrera, “Thermal fixing of photoinduced gratings,” in Photorefractive Materials and Their Applications 1, P. Günter and J.-P. Huignard, eds. (Springer, 2006), pp. 369–396.
  10. J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998). [CrossRef]
  11. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique, ” Opt. Commun. 247, 39–48 (2005). [CrossRef]
  12. J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227–233 (2007). [CrossRef]
  13. J. P. von Bassewitz, I. de Oliveira, and J. Frejlich, “Self-stabilized recording of fixed gratings at high temperature in LiNbO3:Fe,” Appl. Opt. 47, 5315–5320 (2008). [CrossRef]
  14. J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization(Wiley, 2007).
  15. E. Ambite and L. Arizmendi, “Feedback-controlled recording and fixing of photorefractive holograms in reflection geometry on lithium niobate crystals,” J. Opt. Soc. Am. B 28, 1161–1167 (2011). [CrossRef]
  16. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380(2004). [CrossRef]
  17. A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995). [CrossRef]
  18. R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in a self-stabilized recording regime,” J. Opt. A 10, 104006 (2008). [CrossRef]
  19. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  20. A. M. Prokhorov and Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, 1990).
  21. H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical-, Mössbauer, and EPR-methods,” Appl. Phys. 12, 355–368 (1977). [CrossRef]
  22. R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992). [CrossRef]
  23. V. Jerez, I. de Oliveira, and J. Frejlich, “Fixed photorefractive holograms with maximum index-of-refraction modulation in LiNbO3:Fe,” J. Appl. Phys. 106, 063116 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited