OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: 780–788

Bidimensional fluorescence analysis and thermal design of europium thenoyltrifluoroacetonate based thermal-to-visible converter

M. Alfaro, G. Paez, and M. Strojnik  »View Author Affiliations

Applied Optics, Vol. 51, Issue 7, pp. 780-788 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1065 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We perform a bidimensional analysis to evaluate the variation of the fluorescence decay of europium thenoyltrifluoroacetonate (EuTTA) with temperature changes. We analyze how a specific thermal distribution modifies the spatial temperature of the sensing film and we study the corresponding fluorescence response using an integral functional of the emission decay. We present experimental results of a thermal distribution registered with the EuTTA-based thermal-to-visible conversion method. Furthermore, we analyze the spatial and temporal response of the proposed sensing element by using heat-transfer theory. Based on the presented analysis, we establish the optimal thermal and physical design for the sensing element of the proposed thermal-to-visible converter.

© 2012 Optical Society of America

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(160.2540) Materials : Fluorescent and luminescent materials
(230.0040) Optical devices : Detectors
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 27, 2011
Manuscript Accepted: November 25, 2011
Published: February 17, 2012

M. Alfaro, G. Paez, and M. Strojnik, "Bidimensional fluorescence analysis and thermal design of europium thenoyltrifluoroacetonate based thermal-to-visible converter," Appl. Opt. 51, 780-788 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Paez, M. Alfaro, and M. Strojnik, “Thermal characterization of europium thenoyltrifluoroacetonate for its use in formation of thermal images,” Proc. SPIE 6307, 63070G (2006). [CrossRef]
  2. M. Alfaro, G. Paez, and M. Strojnik, “Calibration and evaluation of EuTTA fluorescence as active medium for IR-to-visible conversion,” Proc. SPIE 7082, 70820U (2008). [CrossRef]
  3. B. Dong, X. S. Xu, X. J. Wang, T. Yang, and Y. Y. He, “Infrared-to-visible up-conversion emissions and thermometric applications of Er3+-doped Al2O3,” Appl. Phys. B 89, 281–284 (2007). [CrossRef]
  4. V. V. Krishtop, E. V. Tolstov, V. I. Stroganov, and A. V. Syui, “Converting IR radiation with broad-band pumping in nonlinear-optical crystals,” J. Opt. Technol. 74, 243–245 (2007). [CrossRef]
  5. L. N. Asnis, L. N. Kaporski, T. K. Razumova, A. S. Tibilov, and S. A. Chizhov, “Estimating the possibility of creating an uncooled, direct-conversion bolometric array based on optical pumping of a thermal image into a visible image,” J. Opt. Technol. 75, 366–370 (2008). [CrossRef]
  6. V. A. Pilipovich, A. K. Esman, V. K. Kuleshov, and G. L. Zykov, “Estimating the main parameters of a waveguide microcavity converter of IR images,” J. Opt. Technol. 76, 251–254 (2009). [CrossRef]
  7. J. Gao, Q. Zhang, B. Jiao, and D. Chen, “Optical sensitivity analysis of a bent micro reflector array in uncooled infrared imaging,” J. Micromech. Microeng. 19, 095018 (2009). [CrossRef]
  8. L. Salmon, G. Molinar, D. Zitouni, C. Quintero, C. Bergaud, J. Micheaud, and A. Bousseksou, “A novel approach for fluorescent thermometry and thermal imaging purposes using spin crossover nanoparticles,” J. Mater. Chem. 20, 5499–5503 (2010). [CrossRef]
  9. M. Alfaro, G. Paez, and M. Strojnik, “Conversion of absorbed thermal radiation into visible using europium thenoyltrifluoroacetonate,” Appl. Opt. 49, 5444–5453 (2010). [CrossRef]
  10. M. Alfaro, M. Strojnik, and G. Paez, “EuTTA fluorescence lifetime and spectral power characterization for its use as an active medium for IR-to-visible conversion,” Proc. SPIE 6678, 66781J (2007). [CrossRef]
  11. A. Rogalsky, Infrared Detectors (Taylor and Francis, 2011).
  12. J. P. Holman, Heat Transfer (McGraw-Hill, 1997).
  13. J. W. Judy, “Microelectromechanical systems (MEMS): fabrication, design and applications,” Smart Mater. Struct. 10, 1115–1134 (2001). [CrossRef]
  14. J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43, 219–222 (2002). [CrossRef]
  15. G. Paez and M. Strojnik, “Erbium-doped optical fiber fluorescence temperature sensor with enhanced sensitivity, a high signal-to-noise ratio, and a power ratio in the 520-530- and 550-560-nm bands,” Appl. Opt. 42, 3251–3258 (2003). [CrossRef]
  16. J. Sandoval, G. Paez, and M. Strojnik, “Heat transfer analysis of a dynamic infrared-to-visible converter,” Opt. Eng. 42, 3517–3523 (2003). [CrossRef]
  17. V. López, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133–139 (2004). [CrossRef]
  18. J. Sandoval, G. Paez, and M. Strojnik, “Er-doped silica dynamic IR-to-visible image converter,” Infrared Phys. Technol. 46, 141–145 (2004). [CrossRef]
  19. M. Strojnik-Scholl and G. Paez, “Determination of temperature distributions with micrometer spatial resolution,” Opt. Eng. 46, 036401 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited