OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: 894–897

Schottky barrier characteristics and internal gain mechanism of TiO2 UV detectors

Haifeng Zhang, Min Zhang, Caihui Feng, Weiyou Chen, Caixia Liu, Jingran Zhou, and Shengping Ruan  »View Author Affiliations


Applied Optics, Vol. 51, Issue 7, pp. 894-897 (2012)
http://dx.doi.org/10.1364/AO.51.000894


View Full Text Article

Enhanced HTML    Acrobat PDF (389 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-responsivity metal–semiconductor–metal TiO2 UV photodetectors with Ni and Au electrodes were fabricated identically. Their Schottky barrier heights and photocurrent gain mechanism were studied. The effective barrier height Φ and ideality factor n were evaluated according to the thermionic emission theory. The result that ΦNi was lower than ΦAu may be attributed to the electron transfer from Ni to the TiO2 substrate, which would lead to a dipole layer and, accordingly, decrease the barrier height. In addition, the I–V characteristics of the Ni/TiO2/Ni and Au/TiO2/Au photodetectors were observed. A significant internal gain was obtained, and the mechanism of the internal gain was studied by the phototransistor model in detail.

© 2012 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Detectors

History
Original Manuscript: August 17, 2011
Revised Manuscript: November 1, 2011
Manuscript Accepted: November 1, 2011
Published: February 28, 2012

Citation
Haifeng Zhang, Min Zhang, Caihui Feng, Weiyou Chen, Caixia Liu, Jingran Zhou, and Shengping Ruan, "Schottky barrier characteristics and internal gain mechanism of TiO2 UV detectors," Appl. Opt. 51, 894-897 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-7-894


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Masu, S. Khunkhao, K. Kobayashi, S. Niemcharoen, S. Supadech, and K. Sato, “Photosensing properties of interdigitated metal–semiconductor–metal structures with undepleted region,” Solid-State Electron. 47, 1385–1390(2003). [CrossRef]
  2. L. Liou and B. Nabet, “Simple analytical model of bias dependence of the photocurrent of metal–semiconductor–metal photodetectors,” Appl. Opt. 35, 15–23 (1996). [CrossRef]
  3. G. W. Anderson, L. E. Chipman, F. J. Kub, D. Park, M. Y. Frankel, T. F. Carruthers, J. A. Modolo, K. D. Hobart, and D. S. Katzer, “Gallium arsenide metal–semiconductor–metal photodiodes as optoelectronic mixers for microwave single-sideband modulation,” Appl. Opt. 37, 28–33 (1998). [CrossRef]
  4. G. Guler, O. Gullu, O. F. Bakkaloglu, and A. Turut, “Determination of lateral barrier height of identically prepared Ni/n-type Si Schottky barrier diodes by electrodeposition,” Physica B 403, 2211–2214 (2008). [CrossRef]
  5. X. Kong, C. Liu, W. Dong, X. Zhang, C. Tao, L. Shen, J. Zhou, Y. Fei, and S. Ruan, “Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes,” Appl. Phys. Lett. 94, 123502 (2009). [CrossRef]
  6. H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, and W. Chen, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90, 201118 (2007). [CrossRef]
  7. A. Balducci, M. Marinelli, E. Milani, M. E. Morgada, A. Tucciarone, and G. Verona-Rinati, “Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition,” Appl. Phys. Lett. 86, 193509 (2005). [CrossRef]
  8. E. H. Rhoderick and R. H. Williams, Metal–Semiconductor Contacts (Oxford University, 1988).
  9. W. Monch, Electronic Properties of Semiconductor Interfaces (Springer, 2004).
  10. J. Tang, M. White, G. D. Stucky, and E. W. McFarland, “Electrochemical fabrication of large-area Au/TiO2 junctions,” Electrochem. Commun. 5, 497–501 (2003). [CrossRef]
  11. H. Onishi, T. Aruga, C. Egawa, and Y. Iwasawa, “Photoelectron spectroscopic study of clean and co adsorbed Ni/TiO2 (110) interfaces,” Surf. Sci. 233, 261–268 (1990). [CrossRef]
  12. N. Lopez and J. K. Nørskov, “Theoretical study of the Au/TiO2 (110) interface,” Surf. Sci. 515, 175–186 (2002). [CrossRef]
  13. H. Zhang, C. Feng, C. Liu, T. Xie, J. Zhou, and S. Ruan, “ZrxTi1−xO2 based ultraviolet detectors series,” IEEE Electron Device Lett. 32, 934–936 (2011). [CrossRef]
  14. W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, T. Venkatesan, and H. Shen, “Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films,” Appl. Phys. Lett. 78, 2787–2789 (2001). [CrossRef]
  15. O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79, 1417–1419 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited