OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: 912–916

Design and experimental verification of terahertz wideband filter based on double-layered metal hole arrays

Lei Rao, Dongxiao Yang, Le Zhang, Tao Li, and Song Xia  »View Author Affiliations

Applied Optics, Vol. 51, Issue 7, pp. 912-916 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (584 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A terahertz wideband filter based on double layer metal hole arrays is designed in this paper. A metal hole array is perforated on a metal layer with a square array of circular air holes. The transmission characteristics of the electromagnetic waves through the metal hole array can be determined by the accumulation of in-phase scattering, spoof surface plasmon polaritons, and waveguide modes. The transmission spectrum is tuned by adding another identical layer metal hole array, and a wideband filter can be formed accordingly. Samples containing double-layered metal hole arrays were fabricated by micromachining technology. A wideband filter with center frequency located at 0.8 THz and FWHM reaching 400 GHz was experimentally achieved.

© 2012 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(120.2440) Instrumentation, measurement, and metrology : Filters
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far

ToC Category:
Optics at Surfaces

Original Manuscript: August 12, 2011
Revised Manuscript: November 16, 2011
Manuscript Accepted: November 20, 2011
Published: February 28, 2012

Lei Rao, Dongxiao Yang, Le Zhang, Tao Li, and Song Xia, "Design and experimental verification of terahertz wideband filter based on double-layered metal hole arrays," Appl. Opt. 51, 912-916 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Piesiewicz, T. K. Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007). [CrossRef]
  2. S. Z. A. Lo and T. E. Murphy, “Nanoporous silicon multilayers for terahertz filtering,” Opt. Lett. 34, 2921–2923 (2009). [CrossRef]
  3. R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009). [CrossRef]
  4. M. A. Kaliteevski, S. Brand, J. G. Cook, R. A. Abram, and J. M. Chamberlain, “Terahertz filter based on refractive properties of metallic photonic crystal,” Opt. Express 16, 7330–7335 (2008). [CrossRef]
  5. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
  6. H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96, 121106 (2010).
  7. J. G. Han, J. Q. Gu, X. C. Lu, M. X. He, Q. R. Xing, and W. L. Zhang, “Broadband resonant terahertz transmission in a composite metal-dielectric structure,” Opt. Express 17, 16527–16534 (2009).
  8. E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78, 235426 (2008). [CrossRef]
  9. F. J. G. Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  10. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  11. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985). [CrossRef]
  12. F. Miyamaru and M. Hangyo, “Slab-thickness dependence of polarization change of terahertz waves transmitted through metal hole arrays,” J. Appl. Phys. 99, 016105 (2006). [CrossRef]
  13. M. Dragoman and D. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1–41 (2008). [CrossRef]
  14. F. J. G. Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [CrossRef]
  15. J. A. Kong, Electromagnetic Wave Theory (Wiley, 1986).
  16. F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71, 165408 (2005). [CrossRef]
  17. R. Ortuno, C. G. Meca, F. J. R. Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009). [CrossRef]
  18. S. A. Maier, “Transmission of radiation through apertures and films,” in Plasmonics: Fundamentals and Applications (Springer, 2007), pp. 141–145.
  19. Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband enhanced transmission through the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express 19, 21425–21431 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited