OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: 917–926

Design and implementation of the one-step MSD adder of optical computer

Kai Song and Liping Yan  »View Author Affiliations

Applied Optics, Vol. 51, Issue 7, pp. 917-926 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (727 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



On the basis of the symmetric encoding algorithm for the modified signed-digit (MSD), a 7 * 7 truth table that can be realized with optical methods was developed. And based on the truth table, the optical path structures and circuit implementations of the one-step MSD adder of ternary optical computer (TOC) were designed. Experiments show that the scheme is correct, feasible, and efficient.

© 2012 Optical Society of America

OCIS Codes
(200.3760) Optics in computing : Logic-based optical processing
(200.4560) Optics in computing : Optical data processing
(200.4660) Optics in computing : Optical logic
(200.4740) Optics in computing : Optical processing
(200.4960) Optics in computing : Parallel processing

ToC Category:
Optics in Computing

Original Manuscript: August 1, 2011
Revised Manuscript: November 17, 2011
Manuscript Accepted: November 27, 2011
Published: February 28, 2012

Kai Song and Liping Yan, "Design and implementation of the one-step MSD adder of optical computer," Appl. Opt. 51, 917-926 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. John Caulfield, C. S. Vikram, and A. Zavalin, “Optical logic redux,” Optik 117, 199–209 (2006). [CrossRef]
  2. W. M. Wong and K. J. Blow, “Design and analysis of an all-optical processor for modular arithmetic,” Opt. Commun. 265, 425–433 (2006). [CrossRef]
  3. J. N. Roy and D. K. Gayen, “Integrated all-optical logic and arithmetic operations with the help of a TOAD-based interferometer device—alternative approach,” Appl. Opt. 46, 5304–5310 (2007). [CrossRef]
  4. N. Nishimuraa, Y. Awatsujib, and T. Kubota, “Two-dimensional arrangement of spatial patterns representing numerical data in input images for effective use of hardware resources in digital optical computing system based on optical array logic,” J. Parallel Distr. Comput. 64, 1027–1040(2004). [CrossRef]
  5. N. Nishimuraa, Y. Awatsujib, and T. Kubota, “Performance comparison and evaluation of options for arranging data in digital optical parallel computing,” Optical Review 10, 523–533 (2003). [CrossRef]
  6. Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
  7. Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express 14, 9879–9895 (2006). [CrossRef]
  8. Y. A. Zaghloul and A. R. M. Zaghloul, “Unforced polarization-based optical implementation of binary logic,” Opt. Express 14, 7252–7269 (2006). [CrossRef]
  9. L. Teng, J. J. Peng, Y. Jin, and M. Li, “A cellular automata calculation model based on ternary optical computer,” in Proceedings of the 2nd International Conference on High Performance Computing and Applications (Springer, 2009), pp. 377–383.
  10. Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE 7282, 72823I (2009). [CrossRef]
  11. X. C. Wang, J. J. Peng, and S. Ouyang, “Control method for the optical components of a dynamically reconfigurable optical platform,” Appl. Opt. 50, 662–670 (2011). [CrossRef]
  12. M. M. Hossain, J. U. Ahmed, A. A. S. Awwal, and H. E. Michel, “Optical implementation of an efficient modified signed-digit trinary addition,” Opt. Laser Technol. 30, 49–55 (1998). [CrossRef]
  13. Y. Jin, Y. F. Shen, J. J. Peng, G. T. Ding, and D. J. Yue, “Principles and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
  14. A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE Trans. Electron. Comput. 10, 389–400 (1961). [CrossRef]
  15. B. L. Draker, R. P. Bocker, M. E. Lasher, R. H. Patterson, and W. J. Miceli, “Photonic computing using the modified signed-digit number representation,” Opt. Eng. 25, 38–43 (1986).
  16. M. Li, H. C. He, and Y. Jin, “A new method for optical vectormatrix multiplier,” in Proceedings of 2009 International Conference on Electronic Computer Technology (Computer Society, 2009), pp. 191–194.
  17. X. C. Wang, J. J. Peng, M. Li, Z. Y. Shen, and S. Ouyang, “Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform,” Appl. Opt. 49, 2352–2362 (2010). [CrossRef]
  18. A. Cherri and M. Karim, “Modified-signed digit arithmetic using an efficient symbolic substitution,” Appl. Opt. 27, 3824–3827 (1988). [CrossRef]
  19. A. A. S. Awwal, M. A. Karim, and A. K. Cherri, “Polarization-encoded optical shadow-casting scheme: design of multioutput trinary combinational logic units,” Appl. Opt. 26, 4814–4818 (1987). [CrossRef]
  20. A. Cherri, “Symmetrically recoded modified signed-digit optical addition and subtraction,” Appl. Opt. 33, 4378–4382 (1994). [CrossRef]
  21. A. Cherri and M. Alam, “Algorithms for optoelectronic implementation of modified signed-digit division, square-root, logarithmic, and exponential functions,” Appl. Opt. 40, 1236–1243 (2001). [CrossRef]
  22. S. Mukopadhyay, A. Basuray, and A. K. Das, “New coding scheme for addition and subtraction using the modified signed-digit number representation in optical computation,” Appl. Opt. 27, 1375–1376 (1988). [CrossRef]
  23. C. Taraphdar, T. Chattopadhyay, and J. N. Roy, “Designing of an all-optical scheme for single input ternary logical operations,” Optik Int. J. Light Electron Opt. 122, 33–36 (2011).
  24. A. A. S. Awwal, “Single step recoded signed-digit binary arithmetic using optical symbolic substitution,” Appl. Opt. 31, 3205–3208 (1992). [CrossRef]
  25. Y. Li, D. Kim, A. Kostrzewski, and G. Eichmann, “Content-addressable-memory-based single-stage optical modified-signed-digit arithmetic,” Opt. Lett. 14, 1254–1256 (1989). [CrossRef]
  26. J. Y. Yan, Y. Jin, and K. Z. Zuo, “Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer,” Sci. China Ser. F 51, 1415–1426 (2008).
  27. A. K. Maiti, J. N. Roy, and S. Mukopadhyay, “All-optical conversion scheme from binary to its MTN form with the help of nonlinear material based tree-net architecture,” Chin. Opt. Lett. 5, 480–483 (2007).
  28. T. Chattopadhyay, “All-optical symmetric ternary logic gate,” Opt. Laser Technol. 42, 1014–1021 (2010). [CrossRef]
  29. S. Mukopadhyay, “Binary optical data subtraction by using a ternary dibit representation technique in optical arithmetic problem,” Appl. Opt. 31, 4622–4623 (1992). [CrossRef]
  30. H. A. Kamal, “Parallel high radix negabinary signed digit arithmetic operations: one-step trinary and one-step quaternary addition algorithm,” Kuwait J. Sci. Eng. 31, 189–202 (2004).
  31. T. Chattopadhyay, G. K. Maity, and J. Nath Roy, “Designing of all optical tri-state logic system with the help of optical nonlinear material,” J. Nonlinear Opt. Phys. Mater. 17, 315–328 (2008). [CrossRef]
  32. T. Chattopadhyay, “All-optical quaternary circuits using quaternary Tgate,” Optik Int. J. Light Electron Opt. 121, 1784–1788 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited