OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: 949–953

Fiber-based device for the detection of low-intensity fluctuations of ultrashort pulses

Charles Henri Hage, Bertrand Kibler, and Christophe Finot  »View Author Affiliations


Applied Optics, Vol. 51, Issue 7, pp. 949-953 (2012)
http://dx.doi.org/10.1364/AO.51.000949


View Full Text Article

Enhanced HTML    Acrobat PDF (634 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a fiber-based device that can significantly enhance the low-intensity fluctuations of an ultrashort pulse train to detect them more easily than with usual direct detection systems. Taking advantage of the Raman intrapulse effect that progressively shifts the central frequency of a femtosecond pulse propagating in an anomalous dispersion fiber, a subsequent spectral filtering can efficiently increase the level of fluctuations by more than 1 order of magnitude. We show that attention has to be paid to maintain the shape of the statistical distribution unaffected by the nonlinear process.

© 2012 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(320.7140) Ultrafast optics : Ultrafast processes in fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 21, 2011
Revised Manuscript: November 6, 2011
Manuscript Accepted: November 10, 2011
Published: February 29, 2012

Citation
Charles Henri Hage, Bertrand Kibler, and Christophe Finot, "Fiber-based device for the detection of low-intensity fluctuations of ultrashort pulses," Appl. Opt. 51, 949-953 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-7-949


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Burdett, “Amplitude modulated signals—the lock-in amplifier,” in Handbook of Measuring System Design (Wiley, 2005), pp. 1197–1208.
  2. D. Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986). [CrossRef]
  3. J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14, 84–91 (2008). [CrossRef]
  4. C. Finot and J. Fatome, “All-optical fiber-based ultrafast amplitude jitter magnifier,” Opt. Express 18, 18697–18702 (2010). [CrossRef]
  5. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986). [CrossRef]
  6. M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, “1.2- to 2.2-um tunable Raman soliton source based on a Cr-forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008). [CrossRef]
  7. N. Yamada, S. Nogiwa, and H. Ohta, “640-Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses,” IEEE Photon. Technol. Lett. 16, 1125–1127 (2004). [CrossRef]
  8. E. R. Andresen, V. Birkedal, J. Thogersen, and S. R. Keiding, “Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31, 1328–1330 (2006). [CrossRef]
  9. C. Xu and X. Liu, “Photonic analog-to-digital converter using self-frequency shift and interleaving spectral filters,” Opt. Lett. 28, 986–988 (2003). [CrossRef]
  10. J. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  11. R. Pant, A. C. Judge, E. C. Magi, B. T. Kuhlmey, M. de Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27, 1894–1901 (2010). [CrossRef]
  12. C. H. Hage, B. Kibler, E. R. Andresen, S. Michel, H. Rigneault, A. Courjaud, E. Mottay, J. M. Dudley, G. Millot, and C. Finot, “Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber,” Proc. SPIE 8071, 80710I (2011). [CrossRef]
  13. C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009). [CrossRef]
  14. D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49, 757–767 (2002). [CrossRef]
  15. F. Druon, N. Sanner, G. Lucas-Leclin, P. Georges, K. P. Hansen, and A. Petersson, “Self-compression and Raman soliton generation in a photonic crystal fiber of 100-fs pulses produced by a diode-pumped Yb-doped oscillator,” Appl. Opt. 42, 6768–6770 (2003). [CrossRef]
  16. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007). [CrossRef]
  17. M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Spec. Top. 185, 135–144 (2010). [CrossRef]
  18. D. R. Solli, C. Ropers, and B. Jalali, “Rare frustration of optical supercontinuum generation,” Appl. Phys. Lett. 96, 151108 (2010). [CrossRef]
  19. J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–400 (2011). [CrossRef]
  20. A. C. Judge, S. A. Dekker, R. Pant, C. Martijn de Sterke, and B. J. Eggleton, “Soliton self-frequency shift performance in As2S3 waveguides,” Opt. Express 18, 14960–14968 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited