OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: 963–974

Three-dimensional tomographic reconstruction of mesospheric airglow structures using two-station ground-based image measurements

Vern P. Hart, Timothy E. Doyle, Michael J. Taylor, Brent L. Carruth, Pierre-Dominique Pautet, and Yucheng Zhao  »View Author Affiliations


Applied Optics, Vol. 51, Issue 7, pp. 963-974 (2012)
http://dx.doi.org/10.1364/AO.51.000963


View Full Text Article

Enhanced HTML    Acrobat PDF (1075 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new methodology is presented to create two-dimensional (2D) and three-dimensional (3D) tomographic reconstructions of mesospheric airglow layer structure using two-station all-sky image measurements. A fanning technique is presented that produces a series of cross-sectional 2D reconstructions, which are combined to create a 3D mapping of the airglow volume. The imaging configuration is discussed and the inherent challenges of using limited-angle data in tomographic reconstructions have been analyzed using artificially generated imaging objects. An iterative reconstruction method, the partially constrained algebraic reconstruction technique (PCART), was used in conjunction with a priori information of the airglow emission profile to constrain the height of the imaged region, thereby reducing the indeterminacy of the inverse problem. Synthetic projection data were acquired from the imaging objects and the forward problem to validate the tomographic method and to demonstrate the ability of this technique to accurately reconstruct information using only two ground-based sites. Reconstructions of the OH airglow layer were created using data recorded by all-sky CCD cameras located at Bear Lake Observatory, Utah, and at Star Valley, Wyoming, with an optimal site separation of 100km. The ability to extend powerful 2D and 3D tomographic methods to two-station ground-based measurements offers obvious practical advantages for new measurement programs. The importance and applications of mesospheric tomographic reconstructions in airglow studies, as well as the need for future measurements and continued development of techniques of this type, are discussed.

© 2012 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(100.6950) Image processing : Tomographic image processing

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 15, 2011
Revised Manuscript: November 4, 2011
Manuscript Accepted: December 14, 2011
Published: February 29, 2012

Citation
Vern P. Hart, Timothy E. Doyle, Michael J. Taylor, Brent L. Carruth, Pierre-Dominique Pautet, and Yucheng Zhao, "Three-dimensional tomographic reconstruction of mesospheric airglow structures using two-station ground-based image measurements," Appl. Opt. 51, 963-974 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-7-963

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited