OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: 987–993

Fast M 2 measurement for fiber beams based on modal analysis

Daniel Flamm, Christian Schulze, Robert Brüning, Oliver A. Schmidt, Thomas Kaiser, Siegmund Schröter, and Michael Duparré  »View Author Affiliations


Applied Optics, Vol. 51, Issue 7, pp. 987-993 (2012)
http://dx.doi.org/10.1364/AO.51.000987


View Full Text Article

Enhanced HTML    Acrobat PDF (661 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a fast and experimentally easy technique for measuring the beam propagation ratio M 2 of light guided by optical fibers. A holographic filter enables us to determine amplitudes and phases of the excited fiber eigenmodes. The coherent superposition of modes allows the reconstruction of the optical field. With this information at hand, we are able to simulate the free-space propagation of the beam and to perform a virtual caustic measurement. Associated beam propagation ratios M 2 accurately agree with ISO-standard measurements.

© 2012 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(060.2310) Fiber optics and optical communications : Fiber optics
(090.1760) Holography : Computer holography
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 1, 2011
Manuscript Accepted: November 3, 2011
Published: March 1, 2012

Citation
Daniel Flamm, Christian Schulze, Robert Brüning, Oliver A. Schmidt, Thomas Kaiser, Siegmund Schröter, and Michael Duparré, "Fast M2 measurement for fiber beams based on modal analysis," Appl. Opt. 51, 987-993 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-7-987


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2–14 (1990). [CrossRef]
  2. A. E. Siegman, “How to (maybe) measure laser beam quality,” in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues (Optical Society of America, 1998), p. MQ1.
  3. S. Liao, M. Gong, and H. Zhang, “Theoretical calculation of beam quality factor of large-mode-area fiber amplifiers,” Laser Physics 19, 437–444 (2009). [CrossRef]
  4. ISO 11146-2, “Test methods for laser beam widths, divergence angles and beam propagation ratios. Part 2: General astigmatic beams” (ISO, 2005).
  5. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218–13224 (2011). [CrossRef]
  6. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19, 3258–3271 (2011). [CrossRef]
  7. F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “Non-hexagonal large-pitch fibers for enhanced mode discrimination,” Opt. Express 19, 12081–12086 (2011). [CrossRef]
  8. H. Yoda, P. Polynkin, and M. Mansuripur, “Beam quality factor of higher order modes in a step-index fiber,” J. Lightwave Technol. 24, 1350–1355 (2006). [CrossRef]
  9. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15, 15402–15409 (2007). [CrossRef]
  10. V. A. Soifer and M. Golub, Laser Beam Mode Selection by Computer Generated Holograms (CRC Press, 1994).
  11. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express 17, 9347–9356 (2009). [CrossRef]
  12. O. A. Schmidt, C. Schulze, D. Flamm, R. Brüning, T. Kaiser, S. Schröter, and M. Duparré, “Real-time determination of laser beam quality by modal decomposition,” Opt. Express 19, 6741–6748 (2011). [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  14. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252–2258 (1971). [CrossRef]
  15. D. Flamm, O. A. Schmidt, C. Schulze, J. Borchardt, T. Kaiser, S. Schröter, and M. Duparré, “Measuring the spatial polarization distribution of multimode beams emerging from passive step-index large-mode-area fibers,” Opt. Lett. 35, 3429–3431 (2010). [CrossRef]
  16. W. H. Lee, “Sampled Fourier transform hologram generated by computer,” Appl. Opt. 9, 639–643 (1970). [CrossRef]
  17. T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005). [CrossRef]
  18. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36, 689–691 (2011). [CrossRef]
  19. C. Schulze, O. A. Schmidt, D. Flamm, S. Schröter, and M. Duparré, “Modal analysis of beams emerging from a multi-core fiber using computer-generated holograms,” Proc. SPIE 7914, 79142H (2011). [CrossRef]
  20. O. A. Schmidt, D. Flamm, and M. Duparré, “Modal decomposition for photonic crystal fibers using computer-generated holograms,” Proc. SPIE 7714, 77140W (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1933 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited