OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: B115–B120

Analysis of the absorption layer of CIGS solar cell by laser-induced breakdown spectroscopy

Seok H. Lee, Hee S. Shim, Chan K. Kim, Jong H. Yoo, Richard E. Russo, and Sungho Jeong  »View Author Affiliations


Applied Optics, Vol. 51, Issue 7, pp. B115-B120 (2012)
http://dx.doi.org/10.1364/AO.51.00B115


View Full Text Article

Enhanced HTML    Acrobat PDF (546 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser induced breakdown spectroscopy (LIBS) was applied for the elemental analysis of the thin copper indium gallium diselenide (CuIn1xGaxSe2 [CIGS]) absorption layer deposited on Mo-coated soda-lime glass by the co-evaporation technique. The optimal laser and detection parameters for LIBS measurement of the CIGS absorption layer (1.23 μm) were investigated. The calibration results of Ga/In ratio with respect to the concentration ratios measured by x-ray fluorescence and inductively coupled plasma optical emission spectroscopy showed good linearity.

© 2012 Optical Society of America

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown
(310.6845) Thin films : Thin film devices and applications

History
Original Manuscript: October 3, 2011
Manuscript Accepted: December 9, 2011
Published: February 24, 2012

Citation
Seok H. Lee, Hee S. Shim, Chan K. Kim, Jong H. Yoo, Richard E. Russo, and Sungho Jeong, "Analysis of the absorption layer of CIGS solar cell by laser-induced breakdown spectroscopy," Appl. Opt. 51, B115-B120 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-7-B115


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficiency ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008). [CrossRef]
  2. I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.
  3. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovoltaics 18, 453–466 (2010). [CrossRef]
  4. A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics 12, 93–111 (2004). [CrossRef]
  5. L. Radziemski, “From laser to LIBS, the path of technology development,” Spectrochim. Acta B 57, 1109–1113 (2002).
  6. J. Sneddon and Y.-I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999). [CrossRef]
  7. K. Song, Y.-I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002). [CrossRef]
  8. D. A. Cremers and L. J. Radzienski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  9. A. W. Mizioley, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge University, 2006).
  10. R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry—a review,” Talanta 57, 425–451 (2002). [CrossRef]
  11. E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).
  12. P. Fichet, D. Menut, R. Brennetot, E. Vors, and A. Rivoallan, “Analysis by laser-induced breakdown spectroscopy of complex solids, liquids, and powders with an echelle spectrometer,” Appl. Opt. 42, 6029–6035 (2003). [CrossRef]
  13. J. M. Vadillo and J. J. Laserna, “Laser-induced plasma spectrometry: truly a surface analytical tool,” Spectrochim. Acta B 59, 147–161 (2004).
  14. D. Body and B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001). [CrossRef]
  15. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007). [CrossRef]
  16. A. A. Bol’shakov, A. A. Ganeev, and V. M. Nemets, “Prospects in analytical atomic spectrometry,” Russ. Chem. Rev. 75, 289–302 (2006). [CrossRef]
  17. J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004). [CrossRef]
  18. P. Fichet, M. Tabarant, B. Salle, and C. Gautier, “Comparisons between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338–344 (2006). [CrossRef]
  19. V. Juvé, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, “Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 63, 1047–1053 (2008).
  20. Y. Dikmelik, C. McEnnis, and J. Spicer, “Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene,” Opt. Express 16, 5332–5337 (2008). [CrossRef]
  21. A. Sarkar, D. Alamelu, and S. K. Aggarwal, “Laser-induced breakdown spectroscopy for determination of uranium in thorium-uranium mixed oxide fuel materials,” Talanta 78, 800–804 (2009). [CrossRef]
  22. C. M. Dunsky and F. Colville, “Scribing thin-film solar panels,” http://www.industrial-lasers.com/articles/2008/02/scribing-thin-film-solar-panels.html .
  23. A. A. Bol’shakov, J. H. Yoo, C. Liu, J. R. Plumer, and R. E. Russo, “Laser-induced breakdown spectroscopy in industrial and security applications,” Appl. Opt. 49, C132–C142 (2010). [CrossRef]
  24. L. St-Onge and M. Sabsabi, “Towards quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel,” Spectrochim. Acta B 55, 299–308 (2000).
  25. J. M. Vadillo, C. C. Garcia, S. Palanco, and J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308 nm collimated beam,” J. Anal. At. Spectrom. 13, 793–797 (1998). [CrossRef]
  26. M. Hidalgo, F. Martin, and J. J. Laserna, “Laser-induced breakdown spectrometry of titanium dioxide antireflection coatings in photovoltaic cells,” Anal. Chem. 68, 1095–1100 (1996). [CrossRef]
  27. W. N. Shafarman and L. Stolt, “Cu(InGa)Se2 solar cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Wiley, 2003), pp. 574–575.
  28. Applied Spectra instruments, http://www.appliedspectra.com/products/rt100-hp.html .
  29. M. A. Ismail, H. Imam, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameters of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004). [CrossRef]
  30. N. E. Widjonarko, J. D. Perkins, J. E. Leisch, P. A. Parilla, C. J. Curtis, D. S. Ginley, and J. J. Berry, “Stoichiometric analysis of compositionally graded combinatorial amorphous thin film oxides using laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 81, 073103 (2010). [CrossRef]
  31. Y. Yoon, T. Kim, M. Yang, K. Lee, and G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchemical J. 68, 251–256 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited