OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: B13–B21

Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles

Jennifer L. Gottfried  »View Author Affiliations

Applied Optics, Vol. 51, Issue 7, pp. B13-B21 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (886 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The feasibility of exploiting plasma chemistry to study the chemical reactions between metallic nanoparticles and molecular explosives such as cyclotrimethylenetrinitramine (RDX) has been demonstrated. This method, based on laser-induced breakdown spectroscopy, involves the production of nanoparticles in a laser-induced plasma and the simultaneous observation of time-resolved atomic and molecular emission characteristic of the species involved in the intermediate chemical reactions of the nanoenergetic material in the plasma. Using this method, it has been confirmed that the presence of aluminum promotes the ejection process of carbon from the intermediate products of RDX. The time evolution of species formation, the effects of laser pulse energy, and the effects of trace metal content on the chemical reactions were also studied.

OCIS Codes
(140.3450) Lasers and laser optics : Laser-induced chemistry
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

Original Manuscript: September 27, 2011
Revised Manuscript: January 10, 2012
Manuscript Accepted: January 13, 2012
Published: January 26, 2012

Jennifer L. Gottfried, "Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles," Appl. Opt. 51, B13-B21 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Politzer, P. Lane, and M. E. Grice, “Energetics of aluminum combustion,” J. Phys. Chem. A 105, 7473–7480 (2001). [CrossRef]
  2. P. W. Cooper and S. R. Kurowski, Introduction to the Technology of Explosives (Wiley-VCH, 1996).
  3. P. Brousseau and C. J. Anderson, “Nanometric aluminum in explosives,” Propellants Explos. Pyrotech. 27, 300–306 (2002). [CrossRef]
  4. D. D. Dlott, “Thinking big (and small) about energetic materials,” Mater. Sci. Technol. 22, 463–473 (2006). [CrossRef]
  5. Y. Song, J.-H. Wu, Y.-P. Wang, G.-D. Wu, and X.-D. Yang, “Optical investigation of shock-produced chemical products in pseudo-aluminized explosive powders explosion,” J. Phys. D 40, 3541–3544 (2007). [CrossRef]
  6. Y. Song, J.-H. Wu, M.-A. Xue, Y.-P. Wang, D. Hu, and X.-D. Yang, “Spectral investigations of the combustion of pseudo-nanoaluminized micro-cyclic-[CH2N(NO2)]3 in a shock wave,” J. Phys. D 41, 235501 (2008). [CrossRef]
  7. M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, “Nanoparticle formation by laser ablation,” J. Nanopart. Res. 4, 499–509 (2002). [CrossRef]
  8. S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004). [CrossRef]
  9. S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98, 044907 (2005). [CrossRef]
  10. R. Sattari, C. Dieling, S. Barcikowski, and B. Chichkov, “Laser-based fragmentation of microparticles for nanoparticle generation,” J. Laser Micro/Nanoeng. 3, 100–105 (2008). [CrossRef]
  11. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  12. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009). [CrossRef]
  13. V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta Part B 62, 1321–1328 (2007). [CrossRef]
  14. V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1028–1039 (2009). [CrossRef]
  15. F. C. De Lucia and J. L. Gottfried, “Characterization of a series of nitrogen-rich molecules using laser-induced breakdown spectroscopy,” Propellants Explos. Pyrotech. 35, 268–277 (2010). [CrossRef]
  16. P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66(2010). [CrossRef]
  17. P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011). [CrossRef]
  18. M. Civiš, S. Civiš, K. Sovová, K. Dryahina, P. Španél, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011). [CrossRef]
  19. Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST atomic spectra database (version 4.1)” (National Institute of Standards and Technology, 2010), retrieved 6 Sept. 2011, http://physics.nist.gov/asd .
  20. V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999–1014 (2006). [CrossRef]
  21. M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62B, 1329–1334 (2007). [CrossRef]
  22. M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009). [CrossRef]
  23. Q. Ma and P. Dagdigian, “Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds,” Anal. Bioanal. Chem. 400, 3193–3205 (2011). [CrossRef]
  24. S. Yuasa, Y. Zhu, and S. Sogo, “Ignition and combustion of aluminum in oxygen/nitrogen mixture streams,” Combust. Flame 108, 387–390 (1997). [CrossRef]
  25. A. Fontijn and W. Felder, “HTFFR kinetics studies of Al+CO2→AlO+CO from 300 to 1900 K, a non-Arrhenius reaction,” J. Chem. Phys. 67, 1561–1569 (1977). [CrossRef]
  26. D. R. Lide, ed., Handbook of Chemistry and Physics, 75th ed. (CRC Press, 1994).
  27. J. Akhavan, The Chemistry of Explosives, 2nd ed. (The Royal Society of Chemistry, 2004).
  28. Z. Ji and L. Shufen, “Aluminum oxidation in nitramine propellant,” Propellants Explos. Pyrotech. 24, 224–226(1999). [CrossRef]
  29. K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109, 7290–7299 (2005). [CrossRef]
  30. I. Balchev, N. Minkovski, T. Marinova, M. Shipochka, and N. Sabotinov, “Composition and structure characterization of aluminum after laser ablation,” Mater. Sci. Eng. B 135, 108–112 (2006). [CrossRef]
  31. C. S.-C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61, 321–326 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited