OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: B130–B142

Comparison of two partial least squares-discriminant analysis algorithms for identifying geological samples with the ChemCam laser-induced breakdown spectroscopy instrument

Ann M. Ollila, Jeremie Lasue, Horton E. Newsom, Rosalie A. Multari, Roger C. Wiens, and Samuel M. Clegg  »View Author Affiliations

Applied Optics, Vol. 51, Issue 7, pp. B130-B142 (2012)

View Full Text Article

Acrobat PDF (440 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



ChemCam, a laser-induced breakdown spectroscopy (LIBS) instrument on the Mars Science Laboratory rover, will analyze the chemistry of the martian surface beginning in 2012. Prior to integration on the rover, the ChemCam instrument collected data on a variety of rock types to provide a training set for analysis of data from Mars. Models based on calibration data can be used to classify rocks via multivariate statistical techniques such as partial least squares-discriminant analysis (PLS-DA). In this study, we employ a version of PLS-DA in which modeling is applied in a defined classification flow to a variety of geological materials and compare the results with the traditional PLS-DA technique. Results show that the modified algorithm is more effective at classifying samples.

© 2012 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(350.6090) Other areas of optics : Space optics
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

Original Manuscript: October 3, 2011
Revised Manuscript: January 6, 2012
Manuscript Accepted: January 6, 2012
Published: February 27, 2012

Ann M. Ollila, Jeremie Lasue, Horton E. Newsom, Rosalie A. Multari, Roger C. Wiens, and Samuel M. Clegg, "Comparison of two partial least squares-discriminant analysis algorithms for identifying geological samples with the ChemCam laser-induced breakdown spectroscopy instrument," Appl. Opt. 51, B130-B142 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. E. Milliken, J. P. Grotzinger, and B. J. Thomson, “Paleoclimate of Mars as captured by the stratigraphic record in Gale crater,” Geophys. Res. Lett. 37, L04201 (2010). [CrossRef]
  2. R. B. Anderson and J. F. Bell, “Geologic mapping and characterization of Gale crater and implications for its potential as a Mars Science Laboratory landing site,” Mars 5, 76–128 (2010). [CrossRef]
  3. B. J. Thomson, N. T. Bridges, R. Milliken, A. Baldridge, S. J. Hook, J. K. Crowley, G. M. Marion, C. R. de Souza Filho, A. J. Brown, and C. M. Weitz, “Constraints on the origin and evolution of the layered mound in Gale crater, Mars using Mars Reconnaissance Orbiter data,” Icarus 214, 413–432 (2011). [CrossRef]
  4. R. C. Wiens and S. Maurice, The ChemCam team, “The ChemCam instrument suite on the Mars Science Laboratory rover Curiosity: remote sensing by laser-induced plasmas,” Geochem. News 145 (2011), http://www.geochemsoc.org/publications/geochemicalnews/gn145jun11/chemcaminstrumentsuite.htm .
  5. R. C. Wiens, S. Maurice, B. Barraclough, M. Saccoccio, W. C. Barkley, J. F. Bell, S. Bender, J. Bernardin, D. Blaney, J. Blank, M. Bouyé, N. Bridges, N. Bultman, P. Caïs, R. C. Clanton, B. Clark, S. Clegg, A. Cousin, D. Cremers, A. Cros, L. DeFlores, D. Delapp, R. Dingler, C. D’Uston, M. D. Dyar, T. Elliott, D. Enemark, C. Fabre, M. Flores, O. Forni, O. Gasnault, T. Hale, C. Hays, K. Herkenhoff, E. Kan, L. Kirkland, D. Kouach, D. Landis, Y. Langevin, N. Lanza, F. LaRocca, J. Lasue, J. Latino, D. Limonadi, C. Lindensmith, C. Little, N. Mangold, G. Manhes, P. Mauchien, C. McKay, E. Miller, J. Mooney, R. V. Morris, L. Morrison, T. Nelson, H. Newsom, A. Ollila, M. Ott, L. Pares, R. Perez, C. Provost, J. W. Reiter, T. Roberts, F. Romero, V. Sautter, S. Salazar, J. J. Simmonds, R. Stiglich, S. Storms, N. Striebig, J.-J. Thocaven, T. Trujillo, M. Ulibarri, D. Vaniman, N. Warner, R. Waterbury, R. Whitaker, J. Witt, and B. Wong-Swanson, International Space and Response Division, Los Alamos National Laboratory, Los Alamos, N.Mex. 87544, USA, are preparing a manuscript to be called “The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: body unit and combined system performance.”
  6. S. Maurice, R. C. Wiens, M. Saccoccio, B. Barraclough, O. Gasnault, O. Forni, N. Mangold, D. Baratoux, S. Bender, G. Berger, J. Bernardin, M. Berthet, N. Bridges, D. Blaney, M. Bouyé, P. Caïs, B. Clark, S. Clegg, A. Cousin, D. Cremers, C. Cros, L. DeFlores, C. Derycke, B. Dingler, G. Dromart, B. Dubois, M. Dupieux, B. Dupré, E. Durand, L. d’Uston, C. Fabre, B. Faure, A. Gaboriaud, T. Gharsa, K. Herkenhoff, E. Kan, L. Kirkland, D. Kouach, J.-L. Lacour, Y. Langevin, E. Lewin, D. Limonadi, G. Manhès, P. Mauchien, C. McKay, P.-Y. Meslin, Y. Michel, E. Miller, H. Newsom, G. Orttner, A. Paillet, L. Parès, Y. Parot, R. Pérez, P. Pinet, F. Poitrasson, B. Quertier, B. Sallé, C. Sotin, V. Sautter, H. Séran, J. J. Simmonds, J.-B. Sirven, R. Stiglich, N. Striebig, J.-J. Thocaven, M. Toplis, and D. Vaniman, IRAP, Université Paul Sabatier, CNRS, Observatoire Midi-Pyrénées, Toulouse, France, are preparing a manuscript to be called “The ChemCam instrument suite on the Mars Science Laboratory rover: science objectives and mast unit.”
  7. J. P. Grotzinger, “The Mars Science Laboratory mission,” presented at the Geological Society of America Conference, Minneapolis, Minn., USA, 9–12 Oct. 2011.
  8. H. Y. McSween, G. J. Taylor, and M. B. Wyatt, “Elemental composition of the martian crust,” Science 324, 736–739 (2009). [CrossRef]
  9. P. R. Christensen, J. L. Bandfield, M. D. Smith, V. E. Hamilton, and R. N. Clark, “Identification of a basaltic component on the martian surface from Thermal Emission Spectrometer data,” J. Geophys. Res. 105, 9609–9621 (2000). [CrossRef]
  10. M. C. Malin and K. S. Edgett, “Evidence for persistent flow and aqueous sedimentation on early Mars,” Science 302, 1931–1934 (2003). [CrossRef]
  11. J.-P. Bibring, Y. Langevin, J. F. Mustard, F. Poulet, R. Arvidson, A. Gendrin, B. Gondet, N. Mangold, P. Pinet, F. Forget, and the OMEGA team, “Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data,” Science 312, 400–404 (2006). [CrossRef]
  12. B. L. Ehlmann, J. F. Mustard, S. L. Murchie, F. Poulet, J. L. Bishop, A. J. Brown, W. M. Calvin, R. N. Clark, D. J. Des Marais, R. E. Milliken, L. H. Roach, T. L. Roush, G. A. Swayze, and J. J. Wray, “Orbital identification of carbonate-bearing rocks on Mars,” Science 322, 1828–1832 (2008). [CrossRef]
  13. R. V. Morris, S. W. Ruff, R. Gellert, D. W. Ming, R. E. Arvidson, B. C. Clark, D. C. Golden, K. Siebach, G. Klingerlhöfer, C. Schröder, I. Fleischer, A. S. Yen, and S. W. Squyres, “Identification of carbonate-rich outcrops on Mars by the Spirit rover,” Science 329, 421–424 (2010). [CrossRef]
  14. B. Sallé, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: Capabilities at stand-off distance and detection of chlorine and sulfur elements,” Spectrochim. Acta B 59, 1413–1422 (2004). [CrossRef]
  15. M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011). [CrossRef]
  16. A. M. Ollila, J. G. Blank, R. C. Wiens, J. Lasue, H. E. Newsom, S. M. Clegg, A. Cousin, and S. Maurice, “Preliminary results on the capabilities of the ChemCam laser-induced breakdown spectroscopy (LIBS) instrument to detect carbon on Mars,” presented at the 42nd Lunar and Planetary Science Conference, Houston, Texas, USA, 7–11 March 2011, abstract 2395.
  17. N. L. Lanza, R. C. Wiens, S. M. Clegg, A. M. Ollila, S. D. Humphries, H. E. Newsom, and J. E. Barefield, the ChemCam Team, “Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars,” Appl. Opt. 49, C211–C217 (2010). [CrossRef]
  18. J.-B. Sirven, B. Sallé, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhès, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007). [CrossRef]
  19. R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009). [CrossRef]
  20. S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta B 64, 79–88 (2009). [CrossRef]
  21. J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009). [CrossRef]
  22. J. Lasue, R. C. Wiens, T. F. Stepinski, O. Forni, S. M. Clegg, and S. Maurice, the ChemCam team, “Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data,” Anal. Bioanal. Chem. 400, 3247–3260 (2011). [CrossRef]
  23. R. A. Multari, D. A. Cremers, J. M. Dupre, and J. E. Gustafson, “The use of laser-induced breakdown spectroscopy for distinguishing between bacterial pathogen species and strains,” Appl. Spectrosc. 64, 750–759 (2010). [CrossRef]
  24. R. A. Multari and D. A. Cremers, “Methods for forming recognition algorithms for laser-induced breakdown spectroscopy,” U.S. patent application 2011/0246145 Al (6 Oct. 2011).
  25. J. Gama, P. Brazdil, and L. Fep, “Cascade generalization,” Mach. Learn. 41, 315–343 (2000). [CrossRef]
  26. P. M. Granitto, A. Rébola, U. Cervino, F. Gasperi, F. Biasoli, and H. A. Ceccatto, “Cascade classifiers for multiclass problems,” presented at the Jornadas Argentinas de Informática (JAIIO), 34° International Conference of the Argentine Computer Science and Operational Research Society, Rosario, Argentina, 2005.
  27. M. J. Le Bas, R. W. Le Maitre, A. Streckeisen, and B. Zanettin, “A chemical classification of volcanic rocks based on the total alkali-silica diagram,” J. Petrol. 27, 745–750 (1986).
  28. R. B. Anderson, R. V. Morris, S. M. Clegg, J. F. Bell, R. C. Wiens, S. D. Humphries, S. A. Mertzman, T. G. Graff, and R. McInroy, “The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy,” Icarus 215, 608–627 (2011). [CrossRef]
  29. F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008). [CrossRef]
  30. F. C. De Lucia and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue classification,” Spectrochim. Acta B 66, 122–128 (2011). [CrossRef]
  31. A. J. Hobro, J. Kuligowski, M. Döll, and B. Lendl, “Differentiation of walnut wood species and stream treatment using ATR-FTIR and partial least squares discriminant analysis (PLS-DA),” Anal. Bioanal. Chem. 398, 2713–2722 (2010). [CrossRef]
  32. P. Pourghahramani, B. Pålson, and E. Forssberg, “Multivariate projection and analysis of microstructural characteristics of mechanically activated hematite in different grinding mills,” Int. J. Miner. Process. 87, 73–82 (2008). [CrossRef]
  33. T. Naes, T. Isaksson, T. Fearn, and T. Davies, A User-Friendly Guide to Multivariate Calibration and Classification (NIR, 2004).
  34. B.-H. Mevik and R. Wehrens, “The pls package: principal component and partial least squares regression in R,” J. Stat. Software 18, 1–24 (2007).
  35. R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing), http://www.r-project.org/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited