OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: B165–B170

Practical high-resolution detection method for laser-induced breakdown spectroscopy

Andrew J. Effenberger, Jr. and Jill R. Scott  »View Author Affiliations

Applied Optics, Vol. 51, Issue 7, pp. B165-B170 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (559 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Fabry–Perot etalon was coupled to a Czerny–Turner spectrometer to acquire high-resolution measurements in laser-induced breakdown spectroscopy (LIBS). The spectrometer was built using an inexpensive etalon coupled to a standard 0.5 m imaging spectrometer. The Hg emission doublet at 313.2 nm was used to evaluate instrument performance because it has a splitting of 29 pm. The 313.2 nm doublet was chosen due to the similar splitting seen in isotope splitting from uranium at 424.437 nm, which is 25 pm. The Hg doublet was easily resolved from a continuous-source Hg lamp with a 2 s acquisition. The doublet was also resolved in LIBS spectra of cinnabar (HgS) from the accumulation of 600 laser shots at rate of 10 Hz, or 1 min, under a helium atmosphere. In addition to the observed splitting of the 313.2 nm Hg doublet, the FWHM of the 313.1844 nm line from the doublet is reported at varying helium atmospheric pressures. The high performance, low cost, and compact footprint make this system highly competitive with 2 m double-pass Czerny–Turner spectrometers.

OCIS Codes
(020.2930) Atomic and molecular physics : Hyperfine structure
(050.2230) Diffraction and gratings : Fabry-Perot
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

Original Manuscript: October 6, 2011
Manuscript Accepted: November 22, 2011
Published: March 1, 2012

Andrew J. Effenberger and Jill R. Scott, "Practical high-resolution detection method for laser-induced breakdown spectroscopy," Appl. Opt. 51, B165-B170 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 821–830 (2001). [CrossRef]
  2. C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006). [CrossRef]
  3. L. A. King, I. B. Gornushkin, D. Pappas, B. W. Smith, and J. D. Winefordner, “Rubidium isotope measurements in solid samples by laser ablation-laser atomic absorption spectroscopy,” Spectrochim. Acta B 54, 1771–1781 (1999). [CrossRef]
  4. H. Liu, A. Quentmeier, and K. Niemax, “Diode laser absorption measurement of uranium isotope ratios in solid samples using laser ablation,” Spectrochim. Acta B 57, 1611–1623 (2002). [CrossRef]
  5. A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-atomic absorption spectrometry,” Spectrochim. Acta B 56, 45–55 (2001). [CrossRef]
  6. X. K. Shen and Y. F. Lu, “Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 47, 1810–1815 (2008). [CrossRef]
  7. B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B 54, 943–958(1999). [CrossRef]
  8. W. Pietsch, A. Petit, and A. Briand, “Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma: basic investigations and analytical results,” Spectrochim. Acta B 53, 751–761 (1998). [CrossRef]
  9. C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002). [CrossRef]
  10. F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011). [CrossRef]
  11. T. E. Economou, “Application of radioactive sources in analytical instruments for planetary exploration,” Appl. Radiat. Isot. 68, 542–545 (2010). [CrossRef]
  12. S. A. Harkins, M. S. Appold, B. K. Nelson, A. M. Brewer, and I. M. Groves, “Lead isotope constraints on the origin of nonsulfide zinc and sulfide zinc-lead deposits in the Flinders Ranges, South Australia,” Econ. Geol. 103, 353–364 (2008).
  13. T. Hosono, C. C. Su, K. Okamura, and M. Taniguchi, “Historical record of heavy metal pollution deduced by lead isotope ratios in core sediments from the Osaka Bay, Japan,” J. Geochem. Explor. 107, 1–8 (2010). [CrossRef]
  14. M. Kotarba, “Isotopic geochemistry and habitat of the natural gases from the Upper Carboniferous Zacler coal-bearing formation in the Nowa Ruda coal district (Lower Silesia, Poland),” Org. Geochem. 16, 549–560 (1990). [CrossRef]
  15. E. V. Mikhalsky, F. Henjes-Kunst, B. V. Belyatsky, N. W. Roland, and S. A. Sergeev, “New Sm-Nd, Rb-Sr, U-Pb and Hf isotope systematics for the southern Prince Charles Mountains (East Antarctica) and its tectonic implications,” Precambrian Res. 182, 101–123 (2010). [CrossRef]
  16. S. Ono, “Multiple-sulphur isotope biosignatures,” Space Sci. Rev. 135, 203–220 (2008). [CrossRef]
  17. E. P. Reguir, A. Camacho, P. Yang, A. R. Chakhmouradian, V. S. Kamenetsky, and N. M. Halden, “Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS,” Mineral. Petrol. 100, 95–103 (2010). [CrossRef]
  18. M. Resano, M. P. Marzo, R. Alloza, C. Saenz, F. Vanhaecke, L. Yang, S. Willie, and R. E. Sturgeon, “Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint,” Anal. Chim. Acta 677, 55–63 (2010). [CrossRef]
  19. A. A. Tsygankov, B. A. Litvinovsky, B. M. Jahn, M. K. Reichow, D. Y. Liu, A. N. Larionov, S. L. Presnyakov, Y. N. Lepekhina, and S. A. Sergeev, “Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data),” Russ. Geol. Geophys. 51, 972–994 (2010). [CrossRef]
  20. B. Weber, E. E. Scherer, C. Schulze, V. A. Valencia, P. Montecinos, K. Mezger, and J. Ruiz, “U-Pb and Lu-Hf isotope systematics of lower crust from central-southern Mexico: geodynamic significance of Oaxaquia in a Rodinia realm,” Precambrian Res. 182, 149–162 (2010). [CrossRef]
  21. S. Y. Yang, S. Y. Jiang, Y. H. Jiang, K. D. Zhao, and H. H. Fan, “Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China,” Sci. China Earth Sci. 53, 1411–1426 (2010). [CrossRef]
  22. T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure study of several lines of (PbI)-Pb-207: Part II,” Phys. Scr. 72, 200–202 (2005). [CrossRef]
  23. T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure study of several lines of Pb-207 I,” Phys. Scr. 71, 274–276 (2005). [CrossRef]
  24. T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure and isotope shifts in 461.9 nm forbidden line of PbI,” Opt. Appl. 36, 529–533 (2006).
  25. A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010). [CrossRef]
  26. A. J. Effenberger and J. R. Scott, “Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3217–3227 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited