OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: B192–B200

Stoichiometric investigations of laser-ablated brass plasma

D. N. Patel, P. K. Pandey, and R. K. Thareja  »View Author Affiliations


Applied Optics, Vol. 51, Issue 7, pp. B192-B200 (2012)
http://dx.doi.org/10.1364/AO.51.00B192


View Full Text Article

Enhanced HTML    Acrobat PDF (1387 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-ablated brass plasma plumes expanding in various air pressures have been studied using optical emission spectroscopy and two-dimensional imaging. The velocity of the plume front calculated from the Rt plot decreases from 1.9×104m/s to 5.5×103m/s as the pressure increases from 0.01 to 105Pa. The estimated higher electron temperature for Cu I (510.5 nm) transition than for Zn I (481.1 nm) may be due to differences in the heat of vaporization and vaporization temperature of copper and zinc. The electron density estimated using the Stark-broadened transition 4pP3/224s2D25/2 of Cu I (510.5 nm) is about 10 times higher than that for transition 4s5sS134s4pP23 of Zn I (481.1 nm). The appearance and enhancement of the Cu2 (A–X) band at lower ambient pressure and formation of nanoparticle clusters have been extensively discussed. Stoichiometric and morphological study of the deposited nanoparticles on carbon tape at different ambient pressure reveals a different percentage composition of copper and of nanoparticles.

© 2012 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(300.2140) Spectroscopy : Emission

History
Original Manuscript: October 4, 2011
Revised Manuscript: December 21, 2011
Manuscript Accepted: December 30, 2011
Published: March 1, 2012

Citation
D. N. Patel, P. K. Pandey, and R. K. Thareja, "Stoichiometric investigations of laser-ablated brass plasma," Appl. Opt. 51, B192-B200 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-7-B192


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry for laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005). [CrossRef]
  2. J. F. Ready, LIA Handbook of Laser Material Processing (Laser Institute of America, 2001).
  3. B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996). [CrossRef]
  4. D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).
  5. P. K. Pandey and R. K. Thareja, “Surface nanostructuring of laser ablated copper in ambient gas atmosphere and a magnetic field,” Phys. Plasmas 18, 033505 (2011). [CrossRef]
  6. L. J. Radziemski, “From LASER to LIBS, the path of technological development,” Spectrochim. Acta B 57, 1109–1113 (2002). [CrossRef]
  7. P. K. Pandey and R. K. Thareja, “Plume dynamics and cluster formation in laser-ablated copper plasma in a magnetic field,” J. Appl. Phys. 109, 074901 (2011). [CrossRef]
  8. D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, 2000).
  9. B. Chimier, V. T. Tikhonchuk, and L. Hallo, “Heating model for metal irradiated by a subpicosecond laser pulse,” Phys. Rev. B 75, 195124 (2007). [CrossRef]
  10. C. Cheng and X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B 72, 165415 (2005). [CrossRef]
  11. M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B 75, 235414 (2007). [CrossRef]
  12. L. V. Zhigilei, “Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation,” Appl. Phys. A 76, 339–350 (2003). [CrossRef]
  13. E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther Devies, “Ablation of metals with picosecond laser pulses: evidence of long lived non equilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005). [CrossRef]
  14. S. R. Franklin and R. K. Thareja, “Simplified model to account for dependence of ablation parameters on temperature and phase of the ablated materials,” Appl. Surf. Sci. 222, 293–306 (2004). [CrossRef]
  15. J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010). [CrossRef]
  16. J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007). [CrossRef]
  17. H.-R. Kuhn and D. Gunther, “Elemental fractionation studies in laser ablation inductively coupled plasma mass spectroscopy on laser induced brass aerosols,” Anal. Chem. 75, 747–753 (2003). [CrossRef]
  18. J. Koch, A. von Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004). [CrossRef]
  19. V. Margetic, K. Niemax, and R. Hergenröder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 1003–1010 (2001). [CrossRef]
  20. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000). [CrossRef]
  21. S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaerris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003). [CrossRef]
  22. A. K. Sharma and R. K. Thareja, “Plume dynamics of laser-produced aluminum plasma in ambient nitrogen,” Appl. Surf. Sci. 243, 68–75 (2005). [CrossRef]
  23. J. Reader, C. H. Corliss, W. L. Wiese, and G. A. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic Lines (U. S. National Bureau of Standards, 1980).
  24. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).
  25. W. Lochte-Holtgreven, Plasma Diagnostics (North-Holland, 1968).
  26. M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12, 185–198 (2003). [CrossRef]
  27. G. Bekefi, Principles of Laser Plasmas (Wiley Interscience, 1976).
  28. M. S. Dimitrijevic and S. Sahal-Brechot, “Stark broadening of neutral zinc spectral lines,” Astron. Astrophys. Suppl. Ser. 140, 193–196 (1999). [CrossRef]
  29. E. M. Babina, G. G. Il’in, O. A. Konovalova, M. K. Salakhov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4sS2‒4pP02 and 4sD2‒4pP02 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).
  30. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  31. M. Capitelli, A. Casawola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta B 59, 271–289 (2004). [CrossRef]
  32. Y.-I. Lee, S. P. Sawan, T. L. Thiem, Y.-Y. Teng, and J. Sneddon, “Interaction of laser beam with metals. Part II: space-resolved studies of laser-ablated plasma emission,” Appl. Spectrosc. 46, 436–441 (1992). [CrossRef]
  33. A. D. Sappy and T. K. Gamble, “Planar laser-induced fluorescence imaging of Cu atom and Cu2 in a condensing laser-ablated copper plasma plume,” J. Appl. Phys. 72, 5095–5107(1992). [CrossRef]
  34. G. A. Ozin and S. A. Mitchell, “Fluorescence spectroscopy and photoprocesses of copper, Cu and Cu2 in rare gas matrixes,” J. Phys. Chem. 86, 473–479 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited