OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: B201–B212

Fraunhofer-type absorption lines in double-pulse laser-induced plasma

Lev Nagli, Michael Gaft, and Igor Gornushkin  »View Author Affiliations

Applied Optics, Vol. 51, Issue 7, pp. B201-B212 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (609 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We studied the confocal double-pulse laser-induced plasma in the very beginning of its life. It was found that the second laser pulse fired 0.7 to 5 µs after the first pulse produces plasma which, during the first 0 to 20 ns, resembles solar configuration. There is a very hot and compact plasma core that radiates a broad continuum spectrum and a much larger and cooler outer shell. The light from the hot core passes through the cold outer shell and is partly absorbed by atoms and ions that are in ground (or close to ground) states. This produces absorption lines that are similar to Fraunhofer lines observed in the sun spectrum. The possibility to use these absorption lines for new direct and calibration free laser-induced breakdown spectroscopy analytical applications, both in laboratory and industrial conditions, is proved.

© 2012 Optical Society of America

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(020.6580) Atomic and molecular physics : Stark effect
(350.5400) Other areas of optics : Plasmas
(020.1335) Atomic and molecular physics : Atom optics

Original Manuscript: October 3, 2011
Revised Manuscript: February 14, 2012
Manuscript Accepted: February 14, 2012
Published: March 1, 2012

Lev Nagli, Michael Gaft, and Igor Gornushkin, "Fraunhofer-type absorption lines in double-pulse laser-induced plasma," Appl. Opt. 51, B201-B212 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (Dekker, 1989).
  2. D. Cremers and L. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  3. A. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy (LIBS) (Cambridge University, 2006).
  4. J. Singh and S. Thakur, eds., Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  5. L. Nagli, M. Gaft, and I. Gornushkin, “Comparison of single and double-pulse excitation during the earliest stage of laser induced plasma,” Anal. Bioanal. Chem. 400, 3207–3216 (2011). [CrossRef]
  6. M. Gaft, L. Nagli, I. Gornushkin, and Y. Groisman, “Doubly ionized ion emission in laser-induced breakdown spectroscopy in air,” Anal. Bioanal. Chem. 400, 3229–3237 (2011). [CrossRef]
  7. P. Diggle, K. Gehring, and R. Mac Farlane, “Atomic absorption and emission in laser produced plasmas,” Phys. Status Solidi A 34, K13–K17 (1976). [CrossRef]
  8. P. Burkhalter, G. Mehlman, D. Newman, and B. Ripin, “Techniques for soft x-ray absorption in laser-produced plasmas,” Rev. Sci. Instrum. 61, 2741–2744 (1990). [CrossRef]
  9. G. Tallents, M. Key, A. Ridgeley, W. Shaikh, S. Lewis, D. O’Neill, S. J. Davidson, J. Freeman, and D. Perkins, “An investigation of the x-ray point-source brightness for a short-pulse laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 43, 53–60 (1990). [CrossRef]
  10. L. Hong-Jie, Z. Bao-Han, Z. Ji-Yan, Y. Guo-Hong, Y. Jia-Min, L. Jun, W. Yao-Mei, Z. Wen-Hai, and L. Shell, “Absorption spectrum measurement and simulation of the Mg laser plasma,” Chin. Phys. 19, 362–364 (2002).
  11. J. Rust, J. Nóbrega, C. Calloway, and B. Jones, “Fraunhofer effect atomic absorption spectrometry,” Anal. Chem. 77, 1060–1067 (2005). [CrossRef]
  12. J. Costello, J. Mosnier, E. T. Kennedy, P. Carroll, and G. O’Sullivan, “X-UV absorption spectroscopy with laser-produced plasmas: a review,” Phys. Scr. T34, 77–92 (1991). [CrossRef]
  13. W. Whitty, J. Costello, E. Kennedy, C. Moloney, and J. Mosnier, “Absorption spectroscopy of an expanding laser produced lithium plasma in the extreme ultraviolet using the dual laser plasma technique,” Appl. Surf. Sci. 127–129, 686–691(1998). [CrossRef]
  14. B. Meighan, C. Danson, L. Dardis, C. Lewis, A. MacPhee, C. McGuinness, R. O’Rourke, W. Shaikh, I. Turcu, and J. T. Costello, “Application of a picosecond laser plasma continuum light source to a dual-laser plasma, photoabsorption experiment,” J. Phys. B 33, 1159–1168 (2000). [CrossRef]
  15. E. T. Kennedy, J. T. Costello, J. Mosnier, and P. van Kampen, “VUV/EUV ionizing radiation and atoms and ions: dual laser plasma investigations,” Radiat. Phys. Chem. 70, 291–321 (2004). [CrossRef]
  16. M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebonaet, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004). [CrossRef]
  17. M. Ribière, L. Méès, D. Allano, and B. G. Chèron, “Evolutions in time and space of laser ablated species by dual-laser photoabsorption spectroscopy,” J. Appl. Phys. 104, 043302 (2008). [CrossRef]
  18. M. Ribière and B. G. Chèron, “Analysis of relaxing laser-induced plasmas by absorption spectroscopy: Toward a new quantitative diagnostic technique,” Spectrochim. Acta B 65, 524–532 (2010). [CrossRef]
  19. A. Giacomo, M. Dell’Aglio, D. Bruno, G. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008). [CrossRef]
  20. R. T. Wainner, R. S. Harmonb, A. W. Miziolek, K. L. McNesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001). [CrossRef]
  21. National Institute of Standards and Technology, NIST Atomic Spectra Database Lines Form, Atomic Spectra Database, 2011, http://physics.nist.gov/PhysRefData/ASD/lines_form.html .
  22. P. Smith, C. Heise, J. Esmond, and R. Kurucz, “Atomic spectral line database built from atomic data files from R. L. Kurucz’s CD-ROM 23,” http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html .
  23. V. Morel, A. Bultel, and B. G. Chèron, “Modeling of thermal and chemical non-equilibrium in a laser-induced aluminum plasma by means of a collisional–radiative model,” Spectrochim. Acta B 65, 830–841 (2010). [CrossRef]
  24. I. Gornushkin and U. Panne, “Radiative models of laser-induced plasma and pump–probe diagnostics relevant to laser-induced breakdown spectroscopy,” Spectrochim. Acta B 65, 345–359 (2010). [CrossRef]
  25. P. Lotte, A. Malaquias, R. Giannella, M. von Hellermann, P. Nielsen, and C. Walker, “On the motional Stark effect diagnostic for ITER,” in Proceedings of 29th European Physical Society Conference on Plasma Physics and Controlled Fusion (European Physical Society, 2002), Vol. 26B, paper O-2.01.
  26. K. Jakubowska, “Development of visible spectroscopic techniques for applications in plasma diagnostics,” Licentiate thesis (Royal Institute of Technology, 2006).
  27. I. Gornushkin, S. V. Shabanov, N. Omenetto, and J. D. Winefordner, “Nonisothermal asymmetric expansion of laser induced plasmas into vacuum,” J. Appl. Phys. 100, 073304 (2006). [CrossRef]
  28. H. W. Drawin and P. Felenbok, Data for Plasmas in Local Thermodynamic Equilibrium (Gauthier-Villars, 1965).
  29. H. Griem, Spectral Line Broadening by Plasmas (Academic, 1974).
  30. I. Gornushkin, K. Ampronsah-Manager, B. Smith, N. Omenetto, and J. Winefordner, “Microchip laser-induced breakdown spectroscopy: a preliminary feasibility investigation,” Appl. Spectrosc. 58, 762–769 (2004). [CrossRef]
  31. Y. Groisman and M. Gaft, “Online analysis of potassium fertilizers by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 744–749 (2010). [CrossRef]
  32. I. Gornushkin, J. Anzano, L. King, B. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B 54, 491–503 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited