OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: B213–B222

Correlation of limestone beds using laser-induced breakdown spectroscopy and chemometric analysis

Nancy J. McMillan, Carlos Montoya, and Warren H. Chesner  »View Author Affiliations


Applied Optics, Vol. 51, Issue 7, pp. B213-B222 (2012)
http://dx.doi.org/10.1364/AO.51.00B213


View Full Text Article

Enhanced HTML    Acrobat PDF (1129 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Correlation of limestone beds is commonly based on a variety of features, including the age of the bed, the fossil assemblage, internal sedimentary structures, and the relationship to other units in the stratigraphy. This study uses laser-induced breakdown spectroscopy (LIBS) to correlate 16 limestone beds from Kansas, USA, using three multivariate techniques: (1) soft independent modeling of class analogy (SIMCA) classification, (2) a partial least squares regression, 1 variable (PLS-1) model in which the spectra are regressed against a matrix of the indicator variables 1 through 16, and (3) a matching algorithm that consists of a sequence of binary PLS-1 models. Each gravel-sized limestone particle was analyzed by one LIBS shot; ten spectra were averaged into a single spectrum for chemometric analysis. The entire spectrum (198–969 nm wavelength) is used for multivariate analysis; the only preprocessing is averaging. The SIMCA and PLS-1 models fail to discriminate among the beds, which are chemically similar. In contrast, the matching algorithm has a success rate of 95% to 96%, using half of the spectra to train the model and the other half of the spectra to validate it. However, 100% success can be accomplished by accepting the classification of the majority of spectra for a given bed as the correct classification. This study indicates that LIBS can be applied to complex geologic correlation problems and provide rapid, accurate results.

© 2012 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

History
Original Manuscript: October 5, 2011
Revised Manuscript: December 31, 2011
Manuscript Accepted: January 25, 2012
Published: March 1, 2012

Citation
Nancy J. McMillan, Carlos Montoya, and Warren H. Chesner, "Correlation of limestone beds using laser-induced breakdown spectroscopy and chemometric analysis," Appl. Opt. 51, B213-B222 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-7-B213


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, R. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730–747 (2006). [CrossRef]
  2. K. Novotný, J. Kaiser, M. Galiová, V. Konečná, Novotný, M. Liśka, V. Kanický, and V. Otruba, “Mapping of different structures on a large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta B 63, 1139–1144 (2008). [CrossRef]
  3. R. Barbini, F. Colao, V. Lazic, R. Fantoni, A. Paluci, and M. Angelone, “On board LIBS analysis of marine sediments collected during the XVI Italian campaign in Antarctica,” Spectrochim. Acta B 57, 1203–1218 (2002). [CrossRef]
  4. J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser-induced breakdown spectroscopy analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. 111, doi:10.1029/2005JE002578 (2006). [CrossRef]
  5. A. De Giacomo, M. Del’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007). [CrossRef]
  6. M. Dell’Aglio, A. De Giocomo, R. Gauduiso, O. De Pascale, G. S. Senesi, and S. Longo, “Laser induced breakdown spectroscopy applications to meteorites: chemical analysis and composition profiles,” Geochim. Cosmochim. Acta 74, 7329–7339 (2010). [CrossRef]
  7. F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004). [CrossRef]
  8. B. Sallé, D. A. Cremers, S. Maurice, R. C. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005). [CrossRef]
  9. B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative student of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006). [CrossRef]
  10. D. Derome, M. Cathelineau, M. Cuney, C. Fabre, and T. Lhomme, “Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: a Raman and laser-induced breakdown spectroscopic study of fluid inclusions,” Econ. Geol. 100, 1529–1545 (2005).
  11. D. Derome, M. Cathelineau, C. Fabre, M.-C. Boiron, D. Banks, T. Lhomme, and M. Cuney, “Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: applications to mid-Proterozoic evaporitic Na-Ca brines (Alligator Rivers Uranium Field, Northern Territories Australia),” Chem. Geol. 237, 240–254 (2007). [CrossRef]
  12. C. Fabre, M. C. Coiron, J. Dubessey, A. Chabiron, B. Charoy, and T. M. Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66, 1401–1407 (2002). [CrossRef]
  13. M. Z. Martin, N. Labbé, N. André, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010). [CrossRef]
  14. M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011). [CrossRef]
  15. J.-B. Sirven, B. Bousquet, L. Canioni, and L. Sarger, “Laser-induced breakdown spectroscopy of composite samples: comparison of advanced chemometrics methods,” Anal. Chem. 78, 1462–1469 (2006). [CrossRef]
  16. D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element and mineralogical analysis of mineral ores using laser-induced breakdown spectroscopy and chemometric analysis,” Spectrochim. Acta B 63, 763–769 (2008). [CrossRef]
  17. D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element analysis of iron ore pellets by laser-induced breakdown spectroscopy and principal components regression,” Spectrochim. Acta B 64, 1048–1058 (2009). [CrossRef]
  18. S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta B 64, 79–88 (2009). [CrossRef]
  19. J. M. Tucker, M. D. Dyar, M. W. Schaefer, S. M. Clegg, and R. C. Wiens, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010). [CrossRef]
  20. M. D. Dyar, M. L. Carmosino, J. M. Tucker, E. A. Brown, S. M. Clegg, R. C. Wiens, J. E. Barefield, J. S. Delaney, G. M. Ashley, and S. G. Driese, “Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions,” Chem. Geol., doi:10.10163/j.chemgeo.2011.11.019 (2011). [CrossRef]
  21. C. A. Smith, M. A. Martine, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002). [CrossRef]
  22. R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B 66, 99–104 (2011). [CrossRef]
  23. F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011). [CrossRef]
  24. K. L. Maxwell and M. K. Hudson, “Spectral study of metallic molecular bands in hybrid rocket plumes,” J. Pyrotech. 21, 59–69 (2005).
  25. K. A. Yetter, “Determining provenance of corundum using laser-induced breakdown spectroscopy (LIBS) and chemometric analysis,” M. S. thesis (New Mexico State University, 2011).
  26. I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopy laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586(2000). [CrossRef]
  27. J. J. Remus, J. L. Gottfried, R. S. Harmon, A. Draucker, D. Baron, and R. Yohe, “Archeological applications of laser-induced breakdown spectroscopy: an example from the Coso Volcanic Field, California, using advanced statistical signal processing analysis,” Appl. Opt. 49, C120–C131. [CrossRef]
  28. N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: carbonate and silicates,” Spectrochim. Acta B 62, 1528–1536 (2007). [CrossRef]
  29. R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009). [CrossRef]
  30. J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signature for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009). [CrossRef]
  31. N. L. Lanza, R. C. Wiens, S. M. Clegg, A. M. Ollila, S. D. Humphries, H. E. Newsom, and J. E. BarefieldChemCam Team, “Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars,” Appl. Opt. 49, C211–C217. [CrossRef]
  32. J.-B. Sirven, B. Sallé, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhès, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007). [CrossRef]
  33. D. E. Zeller, “The stratigraphic succession in Kansas,” Bull. Kans. Geol. Sur. 189, 81 (1968).
  34. R. A. Multari, D. A. Cremers, J. M. Dupre, and J. E. Gustafson, “The use of laser-induced breakdown spectroscopy (LIBS) for distinguishing between bacterial pathogen species and strains,” Appl. Spectrosc. 64, 750–759 (2010). [CrossRef]
  35. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  36. S. Wold, “Pattern recognition by means of disjoint principal components models,” Pattern Recogn. 8, 127–139(1976). [CrossRef]
  37. S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemom. Intell. Lab. Syst. 58, 109–130 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited