OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: B30–B41

Toward the optimization of double-pulse LIBS underwater: effects of experimental parameters on the reproducibility and dynamics of laser-induced cavitation bubble

Gabriele Cristoforetti, Marco Tiberi, Andrea Simonelli, Paolo Marsili, and Francesco Giammanco  »View Author Affiliations


Applied Optics, Vol. 51, Issue 7, pp. B30-B41 (2012)
http://dx.doi.org/10.1364/AO.51.000B30


View Full Text Article

Enhanced HTML    Acrobat PDF (1110 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Double-pulse laser-induced breakdown spectroscopy (LIBS) was recently proposed for the analysis of underwater samples, since it overcomes the drawbacks of rapid plasma quenching and of large continuum emission, typical of single-pulse ablation. Despite the attractiveness of the method, this approach suffers nevertheless from a poor spectroscopic reproducibility, which is partially due to the scarce reproducibility of the cavitation bubble induced by the first laser pulse, since pressure and dimensions of the bubble strongly affect plasma emission. In this work, we investigated the reproducibility and the dynamics of the cavitation bubble induced on a solid target in water, and how they depend on pulse duration, energy, and wavelength, as well as on target composition. Results are discussed in terms of the effects on the laser ablation process produced by the crater formation and by the interaction of the laser pulse with floating particles and gas bubbles. This work, preliminary to the optimization of the spectroscopic signal, provides an insight of the phenomena occurring during laser ablation in water, together with useful information for the choice of the laser source to be used in the apparatus.

© 2012 Optical Society of America

OCIS Codes
(010.7340) Atmospheric and oceanic optics : Water
(290.5850) Scattering : Scattering, particles
(350.5400) Other areas of optics : Plasmas
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown
(110.6915) Imaging systems : Time imaging

History
Original Manuscript: September 19, 2011
Revised Manuscript: January 10, 2012
Manuscript Accepted: January 17, 2012
Published: February 7, 2012

Citation
Gabriele Cristoforetti, Marco Tiberi, Andrea Simonelli, Paolo Marsili, and Francesco Giammanco, "Toward the optimization of double-pulse LIBS underwater: effects of experimental parameters on the reproducibility and dynamics of laser-induced cavitation bubble," Appl. Opt. 51, B30-B41 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-7-B30


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta B 62, 721–738 (2007).
  2. A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 52, 25–39 (1997).
  3. V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and S. Jovicevic, “Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters,” Spectrochim. Acta B 62, 30–39 (2007).
  4. V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Recognition of archeological materials underwater by laser induced breakdown spectroscopy,” Spectrochim. Acta B 60, 1014–1024(2005).
  5. V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta B 60, 1002–1013 (2005).
  6. A. Casavola, A. De Giacomo, M. DellAglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo, “Experimental investigation and modeling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta B 60, 975–985(2005).
  7. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser induced breakdown spectroscopy technique in the parallel double pulse configuration,” Spectrochim. Acta B 59, 1907–1917 (2004).
  8. Y. Iida, “Effects of atmosphere on laser vaporization and excitation processes of solid samples,” Spectrochim. Acta B 45, 1353–1367 (1990).
  9. R. H. Cole, Underwater Explosions (Princeton University, 1948).
  10. M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “Single-bubble sonoluminescence,” Rev. Mod. Phys. 74, 425–484 (2002). [CrossRef]
  11. T. Juhasz, G. A. Kastis, C. Sudrez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31 (1996). [CrossRef]
  12. I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13, 2805–2819 (2001). [CrossRef]
  13. B. Han, B. Yang, R. Zhao, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “The influence of thermodynamic gas parameters on laser-induced bubble dynamics in water,” Eur. J. Mech. B, Fluids 29, 430–434 (2010). [CrossRef]
  14. W. K. Soh and A. A. Karimi, “On a calculation of heat transfer in a pulsating bubble,” Appl. Math. Model. 20, 638–645 (1996). [CrossRef]
  15. C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University, 1995).
  16. N. Takada, T. Nakano, and K. Sasaki, “Formation of cavitation-induced pits on target surface in liquid-phase laser ablation,” Appl. Phys. A 101, 255–258 (2010). [CrossRef]
  17. J. C. Isselin, A. P. Alloncle, and M. Autric, “On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena,” J. Appl. Phys. 84, 5766–5771 (1998). [CrossRef]
  18. R. Xu, R. Zhao, Y. Cui, J. Lu, and X. Ni, “The collapse and rebound of gas-vapour cavity on metal surface,” Optik 120, 115–120 (2009). [CrossRef]
  19. T. Tsuji, Y. Tsuboi, N. Kitamura, and M. Tsuji, “Microsecond-resolved imaging of laser ablation at solid-liquid interface: investigation of formation process of nano-size metal colloids,” Appl. Surf. Sci. 229, 365–371 (2004). [CrossRef]
  20. T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ=1064  nmnanosecond pulses,” Chem. Phys. Lett. 500, 242–250(2010). [CrossRef]
  21. G. Compagnini, A. A. Scalisi, and O. Puglisi, “Ablation of noble metals in liquids: a method to obtain nanoparticles in a thin polymeric film,” Phys. Chem. Chem. Phys. 4, 2787–2791 (2002). [CrossRef]
  22. B. Kumar and R. K. Thareja, “Synthesis of nanoparticles in laser ablation of aluminium in liquid,” J. Appl. Phys. 108, 064906 (2010). [CrossRef]
  23. C. Porneala and D. A. Willis, “Observation of nanosecond laser-induced phase explosion in aluminum,” Appl. Phys. Lett. 89, 211121 (2006). [CrossRef]
  24. G. Cristoforetti, S. Legnaioli, V. Palleschi, E. Tognoni, and P. A. Benedetti, “Observation of different mass removal regimes during the laser ablation of an aluminium target in air,” J. Anal. At. Spectrom. 23, 1518–1528 (2008). [CrossRef]
  25. Z. Yan, R. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114, 11370–11374 (2010). [CrossRef]
  26. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  27. F. Giammanco, E. Giorgietti, P. Marsili, and A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010). [CrossRef]
  28. K. Yamada, K. Miyajima, and F. Mafuné, “Thermionic emission of electrons from gold nanoparticles by nanosecond pulse-laser excitation of interband,” J. Phys. Chem. C 111, 11246–11251 (2007). [CrossRef]
  29. A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influences on nanoparticle production during pulsed laser ablation,” J. Laser Micro/Nanoeng. 3, 73–77 (2008).
  30. L. Martí-López, R. Ocaña, J. A. Porro, M. Morales, and J. L. Ocaña, “Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes,” Appl. Opt. 48, 3671–3680 (2009). [CrossRef]
  31. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999). [CrossRef]
  32. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165(1996). [CrossRef]
  33. J. Cheng, W. Perrie, M. Sharp, S. P. Edwardson, N. G. Semaltianos, G. Dearden, and K. G. Watkins, “Single-pulse drilling study on Au, Al, and Ti alloy by using a picosecond laser,” Appl. Phys. A 95, 739–746 (2009). [CrossRef]
  34. J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys. A 72, 89–94 (2001). [CrossRef]
  35. S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picosecond laser ablation of solids,” Appl. Phys. Lett. 77, 2464–2466 (2000). [CrossRef]
  36. T. Sakka, F. Masai, K. Fukami, and Y. H. Ogata, “Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid,” Spectrochim. Acta B 64, 981–985 (2009).
  37. A. Bogaerts, Z. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta B 58, 1867–1893 (2003).
  38. P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta B 59, 1885–1892 (2004).
  39. K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys. 43, 2376–2383 (1972). [CrossRef]
  40. A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67, 3535–3537 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited