OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: B7–B12

Multiband sensor using thick holographic gratings for sulfur detection by laser-induced breakdown spectroscopy

Daniel Gagnon, Simon Lessard, Marc Verhaegen, Patrick Mutchmore, Paul Bouchard, François R. Doucet, and Mohamad Sabsabi  »View Author Affiliations


Applied Optics, Vol. 51, Issue 7, pp. B7-B12 (2012)
http://dx.doi.org/10.1364/AO.51.0000B7


View Full Text Article

Enhanced HTML    Acrobat PDF (455 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Detection of sulfur by optical emission spectroscopy generally presents some difficulties because the strongest lines are in the vacuum UV below 185 nm and therefore are readily absorbed by oxygen molecules in air. A novel concept for a low-cost and efficient system to detect sulfur using near-IR bands by laser-induced breakdown spectroscopy is here proposed. This concept is based on customized thick holographic gratings as spectral filtering elements. The signal integration and the temporal synchronization are performed using built-in custom electronics that amplify and integrate or trigger photodiode output signals. In this work, we use the near-IR lines at 921.287 nm and a background reference at 900 nm. Preliminary results show a limit of detection comparable to that of a conventional high-end system.

© 2012 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(280.3420) Remote sensing and sensors : Laser sensors
(300.6190) Spectroscopy : Spectrometers
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

History
Original Manuscript: October 11, 2011
Manuscript Accepted: November 15, 2011
Published: January 26, 2012

Citation
Daniel Gagnon, Simon Lessard, Marc Verhaegen, Patrick Mutchmore, Paul Bouchard, François R. Doucet, and Mohamad Sabsabi, "Multiband sensor using thick holographic gratings for sulfur detection by laser-induced breakdown spectroscopy," Appl. Opt. 51, B7-B12 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-7-B7


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Salle, J. L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004). [CrossRef]
  2. F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681–689 (2005). [CrossRef]
  3. M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta, Part B 56, 915–922 (2001). [CrossRef]
  4. L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 1131–1140 (2002). [CrossRef]
  5. L. Peter, V. Sturm, and R. Noll, “Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Opt. 42, 6199–6204 (2003). [CrossRef]
  6. V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000). [CrossRef]
  7. M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, and L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis-comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta, Part B 56, 661–669 (2001). [CrossRef]
  8. I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004). [CrossRef]
  9. S. Kaski, H. Hakkanen, and J. Korppi-Tommola, “Sulfide mineral identification using laser-induced plasma spectroscopy,” Miner. Eng. 16, 1239–1243 (2003). [CrossRef]
  10. M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta, Part B 66, 39–56 (2011). [CrossRef]
  11. M. Gaft, L. Nagli, I. Fasaki, M. Kompitsas, and G. Wilsch, “Laser-induced breakdown spectroscopy for on-line sulfur analysis of minerals in ambient conditions,” Spectrochim. Acta, Part B 64, 1098–1104 (2009). [CrossRef]
  12. F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1121–1131 (2005). [CrossRef]
  13. F. Weritz, D. Schaurich, and G. Wisch, “Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near-infrared region,” Spectrochim. Acta, Part B 62, 1504–1511 (2007). [CrossRef]
  14. F. A. Weritz, A. Taffe, S. Dieter, and G. Wilsch, “Detailed depth profiles of sulfate ingress into concrete measured with laser-induced breakdown spectroscopy,” Constr. Build. Mater. 23, 275–283 (2009). [CrossRef]
  15. S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.
  16. B. Sallé, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004). [CrossRef]
  17. V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 141–146 (2009). [CrossRef]
  18. L. Dudragne, P. Adam, and J. Amourouz, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998). [CrossRef]
  19. J. Jasik, J. Heitz, J. D. Pedarnig, and P. Veis, “Vacuum ultraviolet laser-induced breakdown spectroscopy analysis of polymers,” Spectrochim. Acta, Part B 64, 1128–1134 (2009). [CrossRef]
  20. I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004). [CrossRef]
  21. A. Gonzalez, M. Ortiz, and J. Campos, “Determination of sulfur contents in steel by laser-produced plasma atomic emission spectroscopy,” Appl. Spectrosc. 49, 1632–1635 (1995). [CrossRef]
  22. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, Part B 56, 637–649 (2001). [CrossRef]
  23. L. J. Radziemski, D. A. Cremers, K. Benelli, C. Khoo, and R. D. Harris, “LIBS-based detection of As, Br, C, Cl, P, and S in the VUV spectral region in a Mars atmosphere,” presented at Lunar and Planetary Science XXXVI, Houston, TX, 2005, abstract 1747.
  24. J. Bengoechea and E. T. Kennedy, “Time-integrated, spatially resolved plasma characterization of steel samples in the VUV,” J. Anal. At. Spectrom. 19, 468–473 (2004). [CrossRef]
  25. M. H. Núňez, P. Cavalli, G. Petrucci, and N. Omenetto, “Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced photofragmentation,” Appl. Spectrosc. 54, 1805–1816 (2000). [CrossRef]
  26. V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and E. Teppo, “Online monitoring of the laser cleaning of marbles by LIBS sulfur detection,” in Lasers in the Conservation of Artworks (Springer, 2007), Vol. 116, pp. 429–435
  27. G. Asimellis, A. Giannoudakos, and M. Kompitsas, “New near-infrared LIBS detection technique for sulfur,” Anal. Bioanal. Chem. 385, 333–337 (2006). [CrossRef]
  28. Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST Atomic Spectra Database ver. 4.1.0,” (National Institute of Standards and Technology, 2011).
  29. L. B. Glebov, “Photochromic and photo-thermo-refractive glasses,” in Encyclopedia of Smart Materials (Wiley, 2002), pp. 770–780.
  30. I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass,” in Practical Holography XIX: Materials and Application (SPIE, 2005), pp. 183–194.
  31. S. Blais-Ouellette, D. Gagnon, and S. Lessard, “Appartus and method for laser induced breakdown spectroscopy using a multiband sensor,” pub. no. WO/2009/103154 (2009).
  32. M. Verhaegen, “Tunable laser source exhibits out-of-band rejection of 10-6,” Laser Focus World 46(3) (2010).
  33. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  34. IUPAC, Compendium of Chemical Terminology, 2nd ed.(IUPAC, 1997).
  35. Y. Mouget, M. Tourigny, P. Gosselin, and S. Béchard, “Limits of detection of a commercial laser-induced breakdown spectroscopy instrument for various elements in several tablet formulations,” presented at the PITTCON Conference (2002), poster 1687.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited