OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: B74–B82

Examining natural rock varnish and weathering rinds with laser-induced breakdown spectroscopy for application to ChemCam on Mars

Nina L. Lanza, Samuel M. Clegg, Roger C. Wiens, Rhonda E. McInroy, Horton E. Newsom, and Matthew D. Deans  »View Author Affiliations

Applied Optics, Vol. 51, Issue 7, pp. B74-B82 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (697 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A laser-induced breakdown spectroscopy (LIBS) instrument is traveling to Mars as part of ChemCam on the Mars Science Laboratory rover. Martian rocks have weathered exteriors that obscure their bulk compositions. We examine weathered rocks with LIBS in a martian atmosphere to improve interpretations of ChemCam rock analyses on Mars. Profile data are analyzed using principal component analysis, and coatings and rinds are examined using scanning electron microscopy and electron probe microanalysis. Our results show that LIBS is sensitive to minor compositional changes with depth and correctly identifies rock type even if the series of laser pulses does not penetrate to unweathered material.

© 2012 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(240.6490) Optics at surfaces : Spectroscopy, surface
(280.1545) Remote sensing and sensors : Chemical analysis
(120.6085) Instrumentation, measurement, and metrology : Space instrumentation
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

Original Manuscript: October 3, 2011
Revised Manuscript: January 17, 2012
Manuscript Accepted: January 17, 2012
Published: February 10, 2012

Nina L. Lanza, Samuel M. Clegg, Roger C. Wiens, Rhonda E. McInroy, Horton E. Newsom, and Matthew D. Deans, "Examining natural rock varnish and weathering rinds with laser-induced breakdown spectroscopy for application to ChemCam on Mars," Appl. Opt. 51, B74-B82 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. C. Wiens and S. Maurice, and the ChemCam Team, “The ChemCam instrument suite on the Mars Science Laboratory rover Curiosity: remote sensing by laser-induced plasmas,” Geochem. News 145, 41–47 (2011). Available online at http://www.geochemsoc.org/publications/geochemicalnews/gn145jun11/chemcaminstrumentsuite.htm .
  2. J. Grotzinger, “Beyond water on Mars,” Nat. Geosci. 2, 231–233 (2009). [CrossRef]
  3. Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sallé, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration,” Appl. Spectrosc. 58, 897–909(2004). [CrossRef]
  4. L. Radziemski, D. A. Cremers, K. Benelli, C. Khoo, and R. D. Harris, “Use of the vacuum ultraviolet spectral region for laser-induced breakdown spectroscopy-based Martian geology and exploration,” Spectrochim. Acta B 60, 237–248 (2005). [CrossRef]
  5. D. Krinsley, “Models of rock varnish formation constrained by high resolution transmission electron microscopy,” Sedimentology 45, 711–725 (1998). [CrossRef]
  6. D. E. Northup, J. R. Snider, M. N. Spilde, M. L. Porter, J. L. van de Kamp, P. J. Boston, A. M. Nyberg, and J. R. Bagar, “Diversity of rock varnish bacterial communities from Black Canyon, New Mexico,” J. Geophys. Res. 115, G02007, doi:10.1029/2009JG001107 (2010). [CrossRef]
  7. C. C. Allen, “Desert varnish of the Sonoran desert: optical and electron probe microanalysis,” J. Geol. 86, 743–752 (1978). [CrossRef]
  8. R. S. Perry and J. B. Adams, “Desert varnish: evidence for cyclic deposition of manganese,” Nature 276, 489–491 (1978). [CrossRef]
  9. N. Thiagarajan and C.-T. A. Lee, “Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition,” Earth Planet. Sci. Lett. 224, 131–141. [CrossRef]
  10. C. G. Engel and R. P. Sharp, “Chemical data on desert varnish,” Geol. Soc. Am. Bull. 69, 487–518 (1958). [CrossRef]
  11. V. F. Hodge, D. E. Farmer, T. Diaz, and R. L. Orndorff, “Prompt detection of alpha particles from Po210: another clue to the origin of rock varnish?” J. Environ. Radioact. 78, 331–342 (2005). [CrossRef]
  12. W. Chesworth, J. Dejou, and P. Larroque, “The weathering of basalt and relative mobilities of the major elements at Belbex, France,” Geochim. Cosmochim. Acta 45, 1235–1243 (1981). [CrossRef]
  13. L. D. McFadden, J. B. Ritter, and S. G. Wells, “Use of multiparameter relative-age methods for age estimation and correlation of alluvial fan surfaces on a desert piedmont, eastern Mojave Desert, California,” Quat. Res. 32, 276–290 (1989). [CrossRef]
  14. P. W. Birkeland and J. S. Noller, “Rock and mineral weathering,” in Quaternary Geochronology: Methods and Applications, J. S. Noller, J. M. Sowers, and W. R. Lettis, eds. (American Geophysical Union Books Board, 2005), pp. 293–312.
  15. S. J. Gordon and R. I. Dorn, “In situ weathering rind erosion,” Geomorphology 67, 97–113 (2005). [CrossRef]
  16. W. S. Broecker and T. Liu, “Rock varnish: recorder of desert wetness?” GSA Today 11(8), 4–10 (2001). [CrossRef]
  17. J. E. Francis, L. L. Loendorf, and R. I. Dorn, “AMS radiocarbon and cation-ratio dating of rock art in the Bighorn Basin of Wyoming and Montana,” Am. Antiquity 58, 711–737(1993). [CrossRef]
  18. M. Cremaschi, “The rock varnish in the Messak Settafet (Fezzan, Libyan Sahara), age, archeological context, and paleo-environmental implication,” Geoarchaeology 11, 393–421 (1996). [CrossRef]
  19. M. Fleisher, T. Liu, W. S. Broecker, and W. Moore, “A clue regarding the origin of rock varnish,” Geophys. Res. Lett. 26, 103–106 (1999). [CrossRef]
  20. J. M. Sowers, “Rock varnish chronology,” in Quaternary Geochronology: Methods and Applications, J. S. Noller, J. M. Sowers, and W. R. Lettis, eds. (American Geophysical Union Books Board, 2005), pp. 241–260.
  21. P. B. Sak, D. M. Fisher, T. W. Gardner, K. Murphy, and S. L. Brantley, “Rates of weathering rind formation on Costa Rican basalt,” Geochim. Cosmochim. Acta 68, 1453–1472 (2004). [CrossRef]
  22. L. Jandura, K. Burke, B. Kennedy, J. Melko, A. Okon, and D. Sunshine, “An overview of the Mars Science Laboratory sample acquisition, sample processing, and handling subsystem,” in Proceedings of the Twelfth ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, G. Song and R. B. Malla, eds. (ASCE, 2010), pp. 941–948.
  23. L. A. Haskin, A. Wang, B. L. Jolliff, H. Y. McSween, B. C. Clark, D. J. Des Marais, S. M. McLennan, N. J. Tosca, J. A. Hurowitz, J. D. Farmer, A. Yen, S. W. Squyres, R. E. Arvidson, G. Klingelhöfer, C. Schröder, P. A. de Souza, D. W. Ming, R. Gellert, J. Zipfel, J. Brückner, J. F. Bell, K. Herkenhoff, P. R. Christensen, S. Ruff, D. Blaney, S. Gorevan, N. A. Cabrol, L. A. Crumpler, J. Grant, and L. Soderblom, “Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater,” Nature 436, 66–69 (2005). [CrossRef]
  24. H. Y. McSween, R. E. Arvidson, J. F. Bell, D. Blaney, N. A. Cabrol, P. R. Christensen, B. C. Clark, J. A. Crisp, L. S. Crumpler, D. J. Des Marais, J. D. Farmer, R. Gellert, A. Ghosh, S. Gorevan, T. Graff, J. Grant, L. A. Haskin, K. E. Herkenhoff, J. R. Johnson, B. L. Jolliff, G. Klingelhöfer, A. T. Knudson, S. McLennan, K. A. Milam, J. E. Moersch, R. V. Morris, R. Rieder, S. W. Ruff, P. A. de Souza, S. W. Squyres, H. Wänke, A. Wang, M. B. Wyatt, and J. Zipfel, “Basaltic rocks analyzed by the Spirit rover in Gusev crater,” Science 305, 842–845 (2004). [CrossRef]
  25. R. E. Arvidson, R. C. Anderson, P. Bartlett, J. F. Bell, D. Blaney, P. R. Christensen, P. Chu, L. Crumpler, K. Davis, B. L. Ehlmann, R. Fergason, M. P. Golombek, S. Gorevan, J. A. Grant, R. Greeley, E. A. Guinness, A. F. C. Haldemann, K. Herkenhoff, J. Johnson, G. Landis, R. Li, R. Lindemann, H. McSween, D. W. Ming, T. Myrick, L. Richter, F. P. Seelos, S. W. Squyres, R. J. Sullivan, A. Wang, and J. Wilson, “Localization and physical properties experiments conducted by Spirit at Gusev crater,” Science 305, 821–824 (2004). [CrossRef]
  26. R. E. Milliken, G. A. Swayze, R. E. Arvidson, J. L. Bishop, R. N. Clark, B. L. Ehlmann, R. O. Green, J. P. Grotzinger, R. V. Morris, S. L. Murchie, J. F. Mustard, and C. Weitz, “Opaline silica in young deposits on Mars,” Geology 36, 847–850 (2008). [CrossRef]
  27. J. L. Bishop, S. L. Murchie, C. M. Pieters, and A. P. Zent, “A model for formation of dust, soil, and rock coatings on Mars: Physical and chemical processes on the Martian surface,” J. Geophys. Res. 107, 5097, doi:10.1029/2001JE001581 (2002). [CrossRef]
  28. A. H. Knoll, B. L. Jolliff, W. H. Farrand, J. F. Bell, B. C. Clark, R. Gellert, M. P. Golombek, J. P. Grotzinger, K. E. Herkenhoff, J. R. Johnson, S. M. McLennan, R. Morris, S. W. Squyres, R. Sullivan, N. J. Tosca, A. Yen, and Z. Learner, “Veneers, rinds, and fracture fills: relatively late alteration of sedimentary rocks at Meridiani Planum, Mars,” J. Geophys. Res. 113, E06S16, doi:10.1029/2007JE002949 (2008). [CrossRef]
  29. M. M. Osterloo, V. E. Hamilton, J. L. Bandfield, T. D. Glotch, A. M. Baldridge, P. R. Christensen, L. L. Tornabene, and F. S. Anderson, “Chloride-bearing materials in the southern highlands of Mars,” Science 319, 1651–1654 (2008). [CrossRef]
  30. R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy—an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730–747 (2006). [CrossRef]
  31. D. M. Díaz Pace, N. A. Gabriele, M. Garcimuño, C. A. D’Angelo, G. Bertuccelli, and D. Bertuccelli, “Analysis of minerals and rock by laser-induced breakdown spectroscopy,” Spectrosc. Lett. 44, 399–411 (2011). [CrossRef]
  32. A. Cousin, S. Maurice, G. Berger, O. Forni, O. Gasnault, and R. Wiens, and the ChemCam team, “Depth profiles studies using ChemCam,” in Proceedings of 42nd Lunar and Planetary Science Conference, S. Byrne, ed. (Lunar and Planetary Institute, 2011), paper 1963.
  33. R. C. Wiens, L. E. Kirkland, C. P. McKay, D. A. Cremers, J. Thompson, S. Maurice, and P. C. Pinet, “Analyses of IR-stealthy and coated surface materials: a comparison of LIBS and reflectance spectra, and their application to Mars surface exploration,” in Proceedings of 35th Lunar and Planetary Science Conference (Lunar and Planetary Institute, 2004), paper 1695.
  34. G. E. Ulrich and N. G. Bailey, “Geologic map of the SP Mountain part of the San Francisco volcanic field, north-central Arizona,” U. S. Geological Survey, Miscellaneous Geologic Investigations Map MF-1956, scale 1:50000 (1987).
  35. S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta B 64, 79–88 (2009). [CrossRef]
  36. J. M. Tucker, M. D. Dyar, M. W. Schaefer, S. M. Clegg, and R. C. Wiens, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010). [CrossRef]
  37. R. C. Wiens, S. Maurice, S. Bender, B. L. Barraclough, A. Cousin, O. Forni, A. Ollila, H. Newsom, D. Vaniman, S. Clegg, J. A. Lasue, D. Blaney, L. DeFlores, and R. V. Morris, and the ChemCam Team, “Calibration of the MSL/ChemCam/LIBS remote sensing composition instrument,” in Proceedings of 42nd Lunar and Planetary Science Conference, S. Byrne, ed. (Lunar and Planetary Institute, 2011), paper 2370.
  38. J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. (Springer, 2003).
  39. J. A. Bolger, “Semi-quantitative laser-induced breakdown spectroscopy for analysis of mineral drill core,” Appl. Spectrosc. 54, 181–189 (2000). [CrossRef]
  40. J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser-induced breakdown spectroscopy analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. 111E05006, doi:10.1029/2005JE002378 (2006). [CrossRef]
  41. J. Lasue, R. C. Wiens, T. F. Stepinski, O. Forni, S. M. Clegg, and S. Maurice, and the ChemCam team, “Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data,” Anal. Bioanal. Chem. 400, 3247–3260 (2011). [CrossRef]
  42. N. L. Lanza, M. C. Deans, S. M. Clegg, S. D. Humphries, R. E. McInroy, R. C. Wiens, H. E. Newsom, and A. M. Ollila, “Using LIBS to determine composition of natural rock coatings and weathering rinds for planetary exploration,” presented at LIBS 2010, Memphis, Tennessee, 13–17 September 2010, paper 66.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited