OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: B83–B92

Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy

Frank C. De Lucia, Jr. and Jennifer L. Gottfried  »View Author Affiliations

Applied Optics, Vol. 51, Issue 7, pp. B83-B92 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1046 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Standoff laser induced breakdown spectroscopy (LIBS) has previously been used to classify trace residues as either hazardous (explosives, biological, etc.) or benign. Correct classification can become more difficult depending on the surface/substrate underneath the residue due to variations in the laser-material interaction. In addition, classification can become problematic if the substrate material has a similar elemental composition to the residue. We have evaluated coupling multivariate analysis with standoff LIBS to determine the effectiveness of classifying thin explosive residue layers on painted surfaces. Good classification results were obtained despite the fact that the painted surface contributes to the LIBS emission signal.

© 2012 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

Original Manuscript: September 27, 2011
Manuscript Accepted: November 11, 2011
Published: February 14, 2012

Frank C. De Lucia and Jennifer L. Gottfried, "Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy," Appl. Opt. 51, B83-B92 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007). [CrossRef]
  2. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  3. D. A. Cremers, “The analysis of metals at a distance using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 572–578 (1987). [CrossRef]
  4. S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, Part B 61, 88–95 (2006). [CrossRef]
  5. C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom 21, 55–60 (2006). [CrossRef]
  6. A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta, Part B 63, 305–311 (2008). [CrossRef]
  7. J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82, 1389–1400 (2010). [CrossRef]
  8. F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148–6152 (2003). [CrossRef]
  9. D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 micron,” Appl. Opt. 47, G149–G157 (2008). [CrossRef]
  10. Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta, Part B 63, 1011–1015 (2008). [CrossRef]
  11. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009). [CrossRef]
  12. V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1028–1039 (2009). [CrossRef]
  13. P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 66, 12–20 (2011). [CrossRef]
  14. J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007). [CrossRef]
  15. F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta, Part B 64, 1059–1067 (2009). [CrossRef]
  16. D. C. Alvey, K. Morton, R. S. Harmon, J. L. Gottfried, J. J. Remus, L. M. Collins, and M. A. Wise, “Laser-induced breakdown spectroscopy-based geochemical fingerprinting for the rapid analysis and discrimination of minerals: the example of garnet,” Appl. Opt. 49, C168–C180 (2010). [CrossRef]
  17. S. Duchene, V. Detalle, R. Bruder, and J. B. Sirven, “Chemometrics and laser induced breakdown spectroscopy (LIBS) analyses for identification of wall paintings pigments,” Curr. Anal. Chem. 6, 60–65 (2010).
  18. M. R. Martelli, F. Brygo, A. Sadoudi, P. Delaporte, and C. Barron, “Laser-induced breakdown spectroscopy and chemometrics: A novel potential method to analyze wheat grains,” J. Agric. Fd. Chem. 58, 7126–7134 (2010). [CrossRef]
  19. F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121(2008). [CrossRef]
  20. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008). [CrossRef]
  21. J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24, 288–296 (2009). [CrossRef]
  22. M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003). [CrossRef]
  23. F. C. De Lucia and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue discrimination,” Spectrochim. Acta, Part B 66, 122–128 (2011). [CrossRef]
  24. J. L. Gottfried, “Discrimination of biological and chemical threats in residue mixtures on multiple surfaces,” Anal. Bioanal. Chem. 400, 3289–3301 (2011). [CrossRef]
  25. G. Bazalgette Courreges-Lacoste, B. Ahlers, and F. R. Perez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta, Part A 68, 1023–1028 (2007). [CrossRef]
  26. S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta, Part A 68, 1036–1045 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited