OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: B93–B98

Influence of molybdenum layer on the laser plasma generated from interfacing copper layer

Chan K. Kim, Dong S. Kim, Seok H. Lee, Hee-S. Shim, and Sungho Jeong  »View Author Affiliations

Applied Optics, Vol. 51, Issue 7, pp. B93-B98 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (785 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The results for laser-induced breakdown spectroscopy (LIBS) measurement of thin Cu films (1 μm) on soda-lime glass (SLG) substrates with and without a supporting thin Mo layer (1 μm) are reported. The ablation was carried out using a nanosecond Q-switched Nd:YAG laser (λ=1064nm, τ=4ns, spot diameter=50μm, top-hat profile) in the laser fluence range of 19.1665.97J/cm2. It was found that, under the same laser irradiance conditions, the depth and morphology of ablation craters produced with and without the Mo layer were completely different. The electron number densities of the plasma from the two samples calculated from the measured LIBS spectra differed by a factor of 4 as 4.1×1017cm3 (Cu/Mo/SLG) and 17.7×1017cm3 (Cu/SLG), which was attributed to the matrix effects resulting from ionization of Na atoms diffused into the Mo layer. It is demonstrated that a nanosecond-laser-based LIBS is applicable for the characterization and composition analysis of thin film layers of a few micrometer thickness on glass substrates, especially for the measurement of Na contents of each layer.

© 2012 Optical Society of America

OCIS Codes
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown
(310.6845) Thin films : Thin film devices and applications

Original Manuscript: October 3, 2011
Revised Manuscript: December 7, 2011
Manuscript Accepted: December 7, 2011
Published: February 16, 2012

Chan K. Kim, Dong S. Kim, Seok H. Lee, Hee-S. Shim, and Sungho Jeong, "Influence of molybdenum layer on the laser plasma generated from interfacing copper layer," Appl. Opt. 51, B93-B98 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In, Ga) Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19, 894–897 (2011). [CrossRef]
  2. R. Chang and D. Perng, “Near-infrared photodetector with CuIn1−xAlxSe2 thin film,” Appl. Phys. Lett. 99, 081103 (2011). [CrossRef]
  3. C. S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and M. M. Al-Jassim, “Does the local built-in potential on grain boundaries of Cu(In,Ga)Se2 thin films benefit photovoltaic performance of the device?” Appl. Phys. Lett. 85, 2625–2627 (2004). [CrossRef]
  4. J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao, and A. A. Rockett, “Effect of Ga content on defect states in CuIn1−xGaxSe2 photovoltaic devices,” Appl. Phys. Lett. 80, 4540–4542, (2002). [CrossRef]
  5. Z. Zhang, X. Tang, U. Lemmer, W. Witte, O. Kiowski, M. Powalla, and H. Hölscher, “Analysis of untreated cross sections of Cu(In, Ga)Se2 thin-film solar cells with varying Ga content using Kelvin probe force microscopy,” Appl. Phys. Lett. 99, 042111 (2011). [CrossRef]
  6. K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura, and H. Nakanishi, “Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates,” J. Phys. Chem. Solids 64, 1877–1880 (2003). [CrossRef]
  7. M. Zellner, R. Birkmire, E. Eser, W. Shafarman, and J. Chen, “Determination of activation barriers for the diffusion of sodium through CIGS thin-film solar cells,” Prog. Photovolt. Res. Appl. 11, 543–548 (2003). [CrossRef]
  8. R. Caballero, C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Thin Solid Films 517, 2187–2190 (2009). [CrossRef]
  9. Y. Jeong, C. W. Kim, D. W. Park, S. C. Jung, J. Lee, and H. S. Shim, “Field modulation in Na-incorporated Cu(In,Ga)Se2 (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities,” Nanoscale Res. Lett. 6, 581–585 (2011). [CrossRef]
  10. T. Owens, S. Mao, E. Canfield, C. Grigoropoulos, X. Mao, and R. Russo, “Ultrafast thin-film laser-induced breakdown spectroscopy of doped oxides,” Appl. Opt. 49, C67–C69(2010). [CrossRef]
  11. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).
  12. L. M. Cabalín and J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001). [CrossRef]
  13. M. P. Mateo, J. M. Vadillo, and J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16, 1317–1321 (2001). [CrossRef]
  14. A. Bol’shakov, J. Yoo, C. Liu, J. Plumer, and R. Russo, “Laser-induced breakdown spectroscopy in industrial and security applications,” Appl. Opt. 49, C132–C142 (2010). [CrossRef]
  15. R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius’ J. Anal. Chem. 355, 16–20 (1996). [CrossRef]
  16. M. Hanif, M. Salik, and M. A. Baig, “Quantitative studies of copper plasma using laser induced breakdown spectroscopy,” Opt. Lasers Eng. 49, 1456–1461 (2011). [CrossRef]
  17. V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, “An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectochim. Acta B 56, 1011–1025 (2001). [CrossRef]
  18. A. H. Galmed and M. A. Harith, “Temporal follow up of the LTE conditions in aluminum laser induced plasma at different laser energies” Appl. Phys. B 91, 651–660 (2008). [CrossRef]
  19. N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31, 819–924 (2002). [CrossRef]
  20. http://physics.nist.gov/cuu/Constants/ .
  21. Y. Ralchenko and A. E. Kramida, J. Reader, and NIST ASD Team (2008), NIST Atomic Spectra Database, version 3.1.5 (National Institute of Standards and Technology, 2009), http://physics.nist.gov/asd3 .
  22. M. Baudelet, C. C. C. Willis, L. Shah, and M. Richardson, “Laser-induced breakdown spectroscopy of copper with a 2 μm thulium fiber laser,” Opt. Express 18, 7905–7910 (2010). [CrossRef]
  23. A. G. Shenstone, “The first spectrum of copper (Cu I),” Phil. Trans. R. Soc. A 241, 297–322 (1948). [CrossRef]
  24. A. Kono and S. Hattori, “Lifetimes and transition probabilities in Cu II,” J. Opt. Soc. Am. 72, 601–605 (1982). [CrossRef]
  25. P. K. Diwakar, P. B. Jackson, and D. W. Hah, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: consideration of localized matrix effects,” Spectochim. Acta B 62, 1466–1474 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited