OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 8 — Mar. 10, 2012
  • pp: 1010–1020

Magnetic field sensing based on V-shaped groove filled with magnetic fluids

Hongzhu Ji, Shengli Pu, Xiang Wang, and Guojun Yu  »View Author Affiliations

Applied Optics, Vol. 51, Issue 8, pp. 1010-1020 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (717 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A magnetic field sensing system based on V-shaped groove filled with magnetic fluids is developed in this work. The propagation direction of the emergent light after the V-shaped groove (or the position of the emergent light on the detecting plane) is related to the strength of the externally applied magnetic field. The analytical expressions for the sensing system are derived in detail. The sensitivity and other sensing properties of the sensing system are investigated numerically and experimentally. The sensing mechanism is analyzed and ascribed to the magnetically tunable refractive index of magnetic fluids.

© 2012 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: October 25, 2011
Manuscript Accepted: November 22, 2011
Published: March 2, 2012

Virtual Issues
March 14, 2012 Spotlight on Optics

Hongzhu Ji, Shengli Pu, Xiang Wang, and Guojun Yu, "Magnetic field sensing based on V-shaped groove filled with magnetic fluids," Appl. Opt. 51, 1010-1020 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Rosensweig, Ferrohydrodynamics (Cambridge University, 1985).
  2. S. Pu and X. Chen, “Dispersion stability requirements of the nanostructured magnetic liquid,” J. Univ. Shanghai Sci. Technol. 30, 335–338 (2008), in Chinese.
  3. D. Pagliero, Y. Li, S. Fisher, and C. A. Meriles, “Approach to high-frequency, cavity-enhanced Faraday rotation in fluids,” Appl. Opt. 50, 648–654 (2011). [CrossRef]
  4. S. Pu, M. Dai, G. Sun, and M. Liu, “Linear birefringence and linear dichroism coupled optical anisotropy of magnetic fluids by external magnetic fields,” in Proceedings of IEEE Conference on Photonics and Optoelectronics (IEEE, 2009), pp. 1–6.
  5. R. Patel, V. K. Aswal, and R. V. Upadhyay, “Magneto-optically induced retardation and relaxation study in a mixed system of magnetic fluid and cationic micelles,” J. Magn. Magn. Mater. 320, 3366–3369 (2008). [CrossRef]
  6. H. Bhatt, R. Patel, and R. V. Mehta, “Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid,” J. Opt. Soc. Am. A 27, 873–877 (2010). [CrossRef]
  7. R. V. Mehta, R. Patel, B. Chudasama, and R. V. Upadhyay, “Experimental investigation of magnetically induced unusual emission of light from a ferrodispersion,” Opt. Lett. 33, 1987–1989 (2008). [CrossRef]
  8. Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323, 2987–2996 (2011). [CrossRef]
  9. C.-Y. Hong, J.-J. Chieh, S.-Y. Yang, H.-C. Yang, and H.-E. Horng, “Simultaneous identification of the low-field-induced tiny variation of complex refractive index for anisotropic and opaque magnetic-fluid thin film by a stable heterodyne Mach-Zehnder interferometer,” Appl. Opt. 48, 5604–5611 (2009). [CrossRef]
  10. S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005). [CrossRef]
  11. J. Li, X. Qiu, Y. Lin, X. Liu, J. Fu, H. Miao, Q. Zhang, and T. Zhang, “Oscillatory-like relaxation behavior of light transmitted through ferrofluids,” Appl. Opt. 50, 5780–5787 (2011). [CrossRef]
  12. J. Li, Y. Huang, X. Liu, Y. Lin, Q. Li, and R. Gao, “Coordinated chain motion resulting in intensity variation of light transmitted through ferrofluid film,” Phys. Lett. A 372, 6952–6955 (2008). [CrossRef]
  13. C. Z. Fan, E. J. Liang, and J. P. Huang, “Optical properties in the soft photonic crystals based on ferrofluids,” J. Phys. D 44, 325003 (2011).
  14. S. Pu, X. Bai, and L. Wang, “Temperature dependence of photonic crystals based on thermoresponsive magnetic fluids,” J. Magn. Magn. Mater. 323, 2866–2871 (2011). [CrossRef]
  15. L. Zhang and J. Huang, “Photonic band structure of three-dimensional colloidal crystals with field-induced lattice structure transformation,” Chin. Phys. B 19, 024213 (2010).
  16. S. Pu and M. Liu, “Tunable photonic crystals based on MnFe2O4 magnetic fluids by magnetic fields,” J. Alloys Compd. 481, 851–854 (2009). [CrossRef]
  17. A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, “Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids,” Opt. Lett. 36, 2548–2550 (2011). [CrossRef]
  18. S. Pu, X. Chen, L. Chen, W. Liao, Y. Chen, and Y. Xia, “Tunable magnetic fluid grating by applying a magnetic field,” Appl. Phys. Lett. 87, 021901 (2005).
  19. W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid Nanofluid, 1–5 (2011).
  20. Q.-F. Dai, H.-D. Deng, W.-R. Zhao, J. Liu, L.-J. Wu, S. Lan, and A. V. Gopal, “All-optical switching mediated by magnetic nanoparticles,” Opt. Lett. 35, 97–99 (2010). [CrossRef]
  21. P. Zu, C. C. Chan, L. W. Siang, Y. Jin, Y. Zhang, L. H. Fen, L. Chen, and X. Dong, “Magneto-optic fiber Sagnac modulator based on magnetic fluids,” Opt. Lett. 36, 1425–1427 (2011).
  22. X. Bai, S. Pu, and L. Wang, “Optical relaxation properties of magnetic fluids under externally magnetic fields,” Opt. Commun. 284, 4929–4935 (2011). [CrossRef]
  23. X. Bai, S. Pu, L. Wang, X. Wang, G. Yu, and H. Ji, “Tunable magneto-optic modulation based on magnetically responsive nanostructured magnetic fluid,” Chin. Phys. B 20, 107501 (2011).
  24. T.-Z. Zhang, J. Li, H. Miao, Q.-M. Zhang, J. Fu, and B.-C. Wen, “Enhancement of the field modulation of light transmission through films of binary ferrofluids,” Phys. Rev. E 82, 021403 (2010).
  25. R. Patel and R. V. Mehta, “Ferrodispersion: a promising candidate for an optical capacitor,” Appl. Opt. 50, G17–G22 (2011). [CrossRef]
  26. S. Pu, L. Yao, F. Guan, and M. Liu, “Threshold-tunable optical limiters based on nonlinear refraction in ferrosols,” Opt. Commun. 282, 908–913 (2009). [CrossRef]
  27. H. Wu, X. Li, M. Zhang, D. Stade, and H. Schau, “Analysis of a liquid metal current limiter,” in Proceedings of IEEE Conference on Transactions on Components and Packaging Technology (IEEE, 2009), pp. 572–577.
  28. L.-X. Chen, X.-G. Huang, J.-H. Zhu, G.-C. Li, and S. Lan, “Fiber magnetic-field sensor based on nanoparticle magnetic fluid and Fresnel reflection,” Opt. Lett. 36, 2761–2763 (2011). [CrossRef]
  29. Y. Miao, Y. Liu, B. Liu, K. Zhang, H. Zhang, and Q. Zhao, “Intensity-modulated temperature sensor based on the photonic crystal fibers filled with magnetic fluid,” Proc. SPIE 7753, 775347 (2011).
  30. J. Dai, M. Yang, X. Li, H. Liu, and X. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Fiber Technol. 17, 210–213 (2011). [CrossRef]
  31. P. Childs, A. Candiani, and S. Pissadakis, “Optical fiber cladding ring magnetic field sensor,” in Proceedings of IEEE Conference on Photonics Technology Letters (IEEE, 2011), pp. 929–931.
  32. T. Hu, Y. Zhao, X. Li, J. Chen, and Z. Lv, “Novel optical fiber current sensor based on magnetic fluid,” Chin. Opt. Lett. 8, 392–394 (2010).
  33. T. W. Cease and P. Johnston, “A magneto-optic current transducer,” in Proceedings of IEEE Conference on Transactions on Power Delivery (IEEE, 1990), pp. 548–555.
  34. T. Verbiest and J. Wouters, “Magnetic field sensing based on Faraday rotation in inorganic/polymer hybrid materials,” Proc. SPIE 7467, 74670B (2009).
  35. C. D. Perciante and J. A. Ferrari, “Faraday current sensor with temperature monitoring,” Appl. Opt. 44, 6910–6912 (2005). [CrossRef]
  36. M. Li and Y. Li, “Fiber-optic temperature sensor based on interaction of temperature-dependent refractive index and absorption of germanium film,” Appl. Opt. 50, 231–236 (2011). [CrossRef]
  37. H. Zhang, Y. Dong, J. Leeson, L. Chen, and X. Bao, “High sensitivity optical fiber current sensor based on polarization diversity and a Faraday rotation mirror cavity,” Appl. Opt. 50, 924–929 (2011). [CrossRef]
  38. P. R. Forman and F. C. Jahoda, “Linear birefringence effects on fiber-optic current sensors,” Appl. Opt. 27, 3088–3096 (1988). [CrossRef]
  39. Presley and W. Rex, “Rate sensor,” U.S. patent 4,192,189(11 March, 1980).
  40. Suprun, E. Anton, Simonenko, and V. Dmitri, “Location tracking device,” U.S. patent 7,292,223 (6 November, 2007).
  41. TDK Corp, “Angle sensor,” JP Publication No. 2005-114674, A (2005).
  42. O. Baltag, D. Costandache, and A. Salceanu, “Tilt measurement sensor,” Sens. Actuators 81(1–3), 336–339, 2000. [CrossRef]
  43. R. P. Bhatt, “Magnetic-fluid-based smart centrifugal switch,” J. Magn. Magn. Mater. 252, 347–349 (2002). [CrossRef]
  44. R. Patel, “Mechanism of chain formation in nanofluid based MR fluids,” J. Magn. Magn. Mater. 323, 1360–1363 (2011). [CrossRef]
  45. J. Li, Y. Huang, X. Liu, Y. Lin, L. Bai, and Q. Li, “Effect of aggregates on the magnetization property of ferrofluids: A model of gaslike compression,” Sci. Tech. Adv. Mater. 8, 448–454 (2007).
  46. P. Trivedi, R. Patel, K. Parekh, R. V. Upadhyay, and R. V. Mehta, “Magneto-optical effects in temperature-sensitive ferrofluids,” Appl. Opt. 43, 3619–3622 (2004). [CrossRef]
  47. Y. F. Chen, S. Y. Yang, W. S. Tse, H. E. Horng, C.-Y. Hong, and H. C. Yang, “Thermal effect on the field-dependent refractive index of the magnetic fluid film,” Appl. Phys. Lett. 82, 3481–3483 (2003). [CrossRef]
  48. T. Liu, X. Chen, Z. Di, J. Zhang, X. Li, and J. Chen, “Measurement of the magnetic field-dependent refractive index of magnetic fluids in bulk,” Chin. Opt. Lett. 6, 195–197(2008). [CrossRef]
  49. S. Pu, M. Dai, and G. Sun, “Longitudinal field-induced polarized light transmittance of magnetic fluids,” Opt. Commun. 283, 4012–4016 (2010). [CrossRef]
  50. Z. Di, X. Chen, S. Pu, X. Hu, and Y. Xia, “Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids,” Appl. Phys. Lett. 89, 211106 (2006).
  51. C.-Y. Hong, H. E. Horng, and S. Y. Yang, “Tunable refractive index of magnetic fluids and its applications,” Phys. Status Solidi C 1, 1604–1609 (2004).
  52. R. V. Mehta, R. J. Patel, B. N. Chudasama, H. B. Desai, and R. V. Upadhyay, “Effect of dielectric and magnetic contrast on the photonic band gap in ferrodispersion,” Magnetohydrodynamics 44, 69–74 (2008).
  53. S. Y. Yang, J. J. Chieh, H. E. Horng, C.-Y. Hong, and H. C. Yang, “Origin and applications of magnetically tunable refractive index of magnetic fluid films,” Appl. Phys. Lett. 84, 5204–5206 (2004). [CrossRef]
  54. C.-Y. Hong, S. Y. Yang, H. E. Horng, and H. C. Yang, “Control parameters for the tunable refractive index of magnetic fluid films,” J. Appl. Phys. 94, 3849–3852 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited