OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 8 — Mar. 10, 2012
  • pp: 1021–1027

Highly nonlinear all-solid photonic crystal fibers with low dispersion slope

Huizhen Xu, Jian Wu, Kun Xu, Yitang Dai, and Jintong Lin  »View Author Affiliations

Applied Optics, Vol. 51, Issue 8, pp. 1021-1027 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A fluorine-doped trench-assisted structure is proposed to improve the nonlinearity of photonic crystal fibers (PCFs). Three all-solid highly nonlinear PCFs with low dispersion slope and low confinement loss are designed. They exhibit all normal dispersion, two zero dispersion wavelengths (ZDWs) and one ZDW just at 1.55 μm, respectively. The lowest dispersion slope is 5.12×104ps/(km·nm2), which is 2 orders of magnitude lower than that of conventional highly nonlinear fibers. A nonlinear coefficient of 31.5W1·km1 and low loss of 9.62×105dB/km at 1.55 μm has been achieved for this PCF.

© 2012 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4400) Nonlinear optics : Nonlinear optics, materials
(220.0220) Optical design and fabrication : Optical design and fabrication
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 8, 2011
Revised Manuscript: November 11, 2011
Manuscript Accepted: November 15, 2011
Published: March 5, 2012

Huizhen Xu, Jian Wu, Kun Xu, Yitang Dai, and Jintong Lin, "Highly nonlinear all-solid photonic crystal fibers with low dispersion slope," Appl. Opt. 51, 1021-1027 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Nowak, Y. H. Kao, T. J. Xia, M. N. Islam, and D. Nolan, “Low power high-efficiency wavelength conversion based on modulational instability in high-nonlinearity fiber,” Opt. Lett. 23, 936–938 (1998). [CrossRef]
  2. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992). [CrossRef]
  3. J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, “Highly nonlinear bismuth-oxide fiber for supercontinuum generation and femtosecond pulse compression,” J. Lightwave Technol. 23, 3591–3596 (2005). [CrossRef]
  4. M. Onishi, “New nonlinear fibers with application to amplifiers,” in Proceedings of the Optical Fiber Communincation Conference (IEEE, 2004), paper TuC3.
  5. W. H. Reeves, J. C. Knight, and P. St. J. Russel, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609–613 (2002).
  6. Y. P. Yatsenko and A. D. Pryamikov, “Parametric frequency conversion in photonic crystal fibres with germanosilicate core,” J. Opt. A 9, 716–722 (2007). [CrossRef]
  7. Y. P. Yatsenko, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Broadband wavelength conversion in a germanosilicate-core photonic crystal fiber,” Opt. Lett. 34, 2581–2583 (2009). [CrossRef]
  8. B. Barviau, O. Vanvincq, A. Mussot, Y. Quiquempois, G. Mélin, and A. Kudlinski, “Enhanced soliton self-frequency shift and CW supercontinuum generation in GeO2-doped core photonic crystal fibers,” J. Opt. Soc. Am. B 28, 1152–1160 (2011). [CrossRef]
  9. K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FA9.
  10. A. Ferrando, “Design a photonic crystal fibre with flattened chromatic dispersion,” Electron. Lett. 35, 325–327 (1999). [CrossRef]
  11. K. P. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11, 1503–1509 (2003). [CrossRef]
  12. L. Dong, L. Fu, and H. A. McKay, “All glass micro-structured optical fibres,” in Proceedings of the 35th European Conference on Optical Communication (ECOC) (IEEE, 2009), paper 2.1.3.
  13. J. W. Fleming, “Dispersion in GeO2–SiO2 glasses,” Appl. Opt. 23, 4486–4493 (1984). [CrossRef]
  14. J. W. Fleming and D. L. Wood, “Refractive index dispersion and related properties in fluorine doped silica,” Appl. Opt. 22, 3102–3104 (1983). [CrossRef]
  15. T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. 20, 2279–2281 (1995). [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (2006).
  17. C. Chaudhari, T. Suzuki, and Y. Ohishi, “Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-band,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (2009), paper OTuC4.
  18. B. Kuhlmey, G. Renversez, and D. Maystre, “Chromatic dispersion and losses of microstructured optical fibers,” Appl. Opt. 42, 634–639 (2003). [CrossRef]
  19. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  20. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27, 550–559 (2010). [CrossRef]
  21. K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation in a dispersion-flattened nonlinear photonic crystal fiber with normal dispersion,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFH5.
  22. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902–4907 (2011). [CrossRef]
  23. F. Begum, Y. Namihira, S. M. Abdur Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion,” Opt. Commun. 282, 1416–1421 (2009). [CrossRef]
  24. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method,” J. Lightwave Technol. 20, 1433–1442 (2002). [CrossRef]
  25. K. Reichenbach and C. Xu, “The effects of randomly occurring nonuniformities on propagation in photonic crystal fibers,” Opt. Express 13, 2799–2807 (2005). [CrossRef]
  26. K. Reichenbach and C. Xu, “The effects of randomly occurring nonuniformities on propagation in photonic crystal fibers,” Opt. Express 13, 2799–2807 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited