OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 8 — Mar. 10, 2012
  • pp: 1033–1036

Microbubble based fiber-optic Fabry–Perot interferometer formed by fusion splicing single-mode fibers for strain measurement

De-Wen Duan, Yun-jiang Rao, Yu-Song Hou, and Tao Zhu  »View Author Affiliations

Applied Optics, Vol. 51, Issue 8, pp. 1033-1036 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (447 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an all-fiber optical Fabry–Perot interferometer (FPI) strain sensor whose cavity is a microscopic air bubble. The bubble is formed by fusion splicing together two sections of single-mode fibers (SMFs) with cleaved flat tip and arc fusion induced hemispherical tip, respectively. The fabricated interferometers are with bubble diameters of typically 100μm. Strain and temperature sensitivities of fabricated interferometers are studied experimentally; a strain sensitivity of over 4Pm/με and a thermal sensitivity of less than 0.9Pm/°C is obtained.

© 2012 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.2660) Other areas of optics : Fusion

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 7, 2011
Manuscript Accepted: October 19, 2011
Published: March 5, 2012

De-Wen Duan, Yun-jiang Rao, Yu-Song Hou, and Tao Zhu, "Microbubble based fiber-optic Fabry–Perot interferometer formed by fusion splicing single-mode fibers for strain measurement," Appl. Opt. 51, 1033-1036 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Udd, ed., Fiber Optic Smart Structures (Wiley, 1995).
  2. W. Huo, “Controlled fabrication system of Fabry–Perot optical fiber sensors,” M. S. thesis (Virginia Polytechnic Institute, 2000).
  3. Y. J. Rao, “Recent progress in fiber-optic extrinsic FP interferometric sensors,” Opt. Fiber Technol. 12, 227–237 (2006). [CrossRef]
  4. C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992). [CrossRef]
  5. J. Sirkis, T. A. Berkoff, and R. T. Jones, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995). [CrossRef]
  6. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32, 2662–2664 (2007). [CrossRef]
  7. W.-H. Tsai and C.-J. Lin, “A novel structure for the intrinsic Fabry–Perot fiber-optic temperature sensor,” J. Lightwave Technol. 19, 682–686 (2001). [CrossRef]
  8. O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009). [CrossRef]
  9. X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor,” Appl. Opt. 45, 7760–7766 (2006). [CrossRef]
  10. V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A 138, 248–260 (2007). [CrossRef]
  11. E. Cibula and D. Donlagic, “In-line short cavity Fabry–Perot strain sensor for quasi distributed measurement utilizing standard OTDR,” Opt. Express 15, 8719–8730 (2007). [CrossRef]
  12. Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, “Micro Fabry–Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15, 14123–14128 (2007). [CrossRef]
  13. E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92, 101117–101119 (2008). [CrossRef]
  14. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro- Fabry–Perot interferometer,” Opt. Lett. 34, 2441–2443 (2009). [CrossRef]
  15. A. D. Yablon, Optical Fiber Fusion Splicing (Springer, 2005).
  16. K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fibre,” J. Opt. A 8, 782–787 (2006). [CrossRef]
  17. E. Li, “Characterization of a fiber lens,” Opt. Lett. 31, 169–171 (2006). [CrossRef]
  18. T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283, 3683–3685 (2010). [CrossRef]
  19. Y.-J. Rao, D.-W. Duan, Y.-E. Fan, T. Ke, and M. Xu, “High-temperature annealing behaviors of CO2 laser pulse-induced long-period fiber grating in a photonic crystal fiber,” J. Lightwave Technol. 28, 1530–1535 (2010). [CrossRef]
  20. A. K. Varshneya, Fundamentals of Inorganic Glasses (Elsevier Science, 1994).
  21. A. D. Yablon, M. F. Yan, and P. Wisk, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited