OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 8 — Mar. 10, 2012
  • pp: 1049–1060

Compact infrared cryogenic wafer-level camera: design and experimental validation

Florence de la Barrière, Guillaume Druart, Nicolas Guérineau, Gilles Lasfargues, Manuel Fendler, Nicolas Lhermet, and Jean Taboury  »View Author Affiliations


Applied Optics, Vol. 51, Issue 8, pp. 1049-1060 (2012)
http://dx.doi.org/10.1364/AO.51.001049


View Full Text Article

Enhanced HTML    Acrobat PDF (1440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a compact infrared cryogenic multichannel camera with a wide field of view equal to 120°. By merging the optics with the detector, the concept is compatible with both cryogenic constraints and wafer-level fabrication. The design strategy of such a camera is described, as well as its fabrication and integration process. Its characterization has been carried out in terms of the modulation transfer function and the noise equivalent temperature difference (NETD). The optical system is limited by the diffraction. By cooling the optics, we achieve a very low NETD equal to 15 mK compared with traditional infrared cameras. A postprocessing algorithm that aims at reconstructing a well-sampled image from the set of undersampled raw subimages produced by the camera is proposed and validated on experimental images.

© 2012 Optical Society of America

OCIS Codes
(080.2730) Geometric optics : Matrix methods in paraxial optics
(110.3080) Imaging systems : Infrared imaging
(110.4190) Imaging systems : Multiple imaging
(220.4830) Optical design and fabrication : Systems design
(350.3950) Other areas of optics : Micro-optics
(110.4155) Imaging systems : Multiframe image processing

ToC Category:
Imaging Systems

History
Original Manuscript: November 23, 2011
Manuscript Accepted: January 9, 2012
Published: March 5, 2012

Citation
Florence de la Barrière, Guillaume Druart, Nicolas Guérineau, Gilles Lasfargues, Manuel Fendler, Nicolas Lhermet, and Jean Taboury, "Compact infrared cryogenic wafer-level camera: design and experimental validation," Appl. Opt. 51, 1049-1060 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-8-1049


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–4998 (1989). [CrossRef]
  2. R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003). [CrossRef]
  3. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001). [CrossRef]
  4. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43, 4303–4310 (2004). [CrossRef]
  5. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, and A. Tünnermann, “Microoptical telescope compound eye,” Opt. Express 13, 889–903 (2005). [CrossRef]
  6. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949–2956 (2005). [CrossRef]
  7. K. Stollberg, A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects,” Opt. Express 17, 15747–15759 (2009). [CrossRef]
  8. G. Druart, N. Guérineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluére, J. Primot, and M. Fendler, “Demonstration of an infrared microcamera inspired by Xenos Peckii vision,” Appl. Opt. 48, 3368–3374 (2009). [CrossRef]
  9. A. Brückner, J. Duparré, F. Wippermann, R. Leitel, P. Dannberg, and A. Bräuer, “Ultra-compact close-up microoptical imaging system,” Proc. SPIE 7786, 77860A-1–77860A-8 (2010).
  10. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18, 24379–24394 (2010). [CrossRef]
  11. J. Meyer, A. Brückner, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Optical cluster eye fabricated on wafer-level,” Opt. Express 19, 17506–17519 (2011). [CrossRef]
  12. L. C. Laycock and V. A. Handerek, “Multi-aperture imaging device for airborne platforms,” Proc. SPIE 6737, 673709-1–673709-11 (2007).
  13. L. C. Laycock and V. A. Handerek, “Miniature imaging devices for airborne platforms,” Proc. SPIE 7113, 71130M-1–71130M-9 (2008).
  14. M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. Te Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47, B1–B10 (2008). [CrossRef]
  15. A. Portnoy, N. Pitsianis, X. Sun, D. Brady, R. Gibbons, A. Silver, R. Te Kolste, C. Chen, T. Dillon, and D. Prather, “Design and characterization of thin multiple aperture infrared cameras,” Appl. Opt. 48, 2115–2126 (2009). [CrossRef]
  16. A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuit Syst. 24, 652–654 (1977). [CrossRef]
  17. Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka, “Reconstruction of a high-resolution image on a compound-eye image-capturing system,” Appl. Opt. 43, 1719–1727 (2004). [CrossRef]
  18. K. Nitta, R. Shogenji, S. Miyatake, and J. Tanida, “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method,” Appl. Opt. 45, 2893–2900 (2006). [CrossRef]
  19. K. Choi and T. J. Schulz, “Signal-processing approaches for image-resolution restoration for TOMBO imagery,” Appl. Opt. 47, B104–B116 (2008). [CrossRef]
  20. A. V. Kanaev, J. R. Ackerman, E. F. Fleet, and D. A. Scribner, “TOMBO sensor with scene-independent superresolution processing,” Opt. Lett. 32, 2855–2857 (2007). [CrossRef]
  21. J. Shi, S. E. Reichenbach, and J. D. Howe, “Small-kernel superresolution methods for microscanning imaging systems,” Appl. Opt. 45, 1203–1214 (2006). [CrossRef]
  22. G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).
  23. F. de la Barrière, G. Druart, N. Guérineau, and J. Taboury, “Design strategies to simplify and miniaturize imaging systems,” Appl. Opt. 50, 943–951 (2011). [CrossRef]
  24. F. de la Barrière, G. Druart, N. Guérineau, J. Taboury, J. Primot, and J. Deschamps, “Modulation transfer function measurement of a multichannel optical system,” Appl. Opt. 49, 2879–2890 (2010). [CrossRef]
  25. R. Gläbe and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602-1–771602-10 (2010).
  26. http://www.suss-microoptics.com .
  27. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts and Company, 2005), p. 444.
  28. M. J. Kidger, Fundamental Optical Design (SPIE, 2002).
  29. P. Refregier, “Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency,” Opt. Lett. 16, 829–831 (1991). [CrossRef]
  30. M. W. Haney, “Performance scaling in flat imagers,” Appl. Opt. 45, 2901–2910 (2006). [CrossRef]
  31. M. W. Haney, “Comments on “Design and characterization of thin multiple aperture infrared cameras,” Appl. Opt. 50, 1584–1586 (2011). [CrossRef]
  32. D. J. Brady, “Reply to “Comments on multiple aperture cameras,” Appl. Opt. 50, 1587–1592 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited