OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 8 — Mar. 10, 2012
  • pp: 1067–1070

All-fiber Q-switched operation of thulium-doped silica fiber laser by piezoelectric microbending

Hajime Sakata, Shungo Araki, Ryo Toyama, and Masahiro Tomiki  »View Author Affiliations


Applied Optics, Vol. 51, Issue 8, pp. 1067-1070 (2012)
http://dx.doi.org/10.1364/AO.51.001067


View Full Text Article

Enhanced HTML    Acrobat PDF (290 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an all-fiber Q-switched laser operation in the 2 µm region on the basis of a dynamic periodic microbend and pulsed-pump configuration. A single-mode thulium-doped silica fiber is pumped by 1.6 µm-band laser diodes, and the dynamic loss is introduced in the fiber ring resonator by the periodic microbend that is electrically controlled with a piezoelectric actuator. When the voltage-off period of the piezoelectric actuator is set at 20 µs for the pump power of 120 mW, the output pulse power is measured by 420 mW with a pulse width of 1.3 µs.

© 2012 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components
(140.3540) Lasers and laser optics : Lasers, Q-switched
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Diffraction and Gratings

History
Original Manuscript: November 8, 2011
Revised Manuscript: December 28, 2011
Manuscript Accepted: January 4, 2012
Published: March 5, 2012

Citation
Hajime Sakata, Shungo Araki, Ryo Toyama, and Masahiro Tomiki, "All-fiber Q-switched operation of thulium-doped silica fiber laser by piezoelectric microbending," Appl. Opt. 51, 1067-1070 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-8-1067


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. F. Morse, K. Oh, and L. Reinhart, “Carbon dioxide detection using a co-doped Tm-Ho optical fiber,” Proc. SPIE 2510, 158–164 (1995). [CrossRef]
  2. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser lidar system,” Appl. Opt. 49, 562–567 (2010). [CrossRef]
  3. S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30, 184–190 (2002). [CrossRef]
  4. A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006). [CrossRef]
  5. W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+ doped fibre lasers,” Electron. Lett. 26, 746–747 (1990). [CrossRef]
  6. T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 µm Tm-doped silica fibre laser pumped at 1.57 µm,” Electron. Lett. 30, 220–221 (1994). [CrossRef]
  7. R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6 μm pumped 1.9 μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995). [CrossRef]
  8. A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218, 337–344 (2003). [CrossRef]
  9. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009). [CrossRef]
  10. P. Myslinski, X. Pan, C. Barnard, J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993). [CrossRef]
  11. J. Geng, Q. Wang, J. Smith, T. Luo, F. Amzajerdian, and S. Jiang, “All-fiber Q-switched single-frequency Tm-doped laser near 2 μm,” Opt. Lett. 34, 3713–3715 (2009). [CrossRef]
  12. J. N. Blake, B. Y. Kim, and H. J. Shaw, “Fiber-optic modal coupler using periodic microbending,” Opt. Lett. 11, 177–179 (1986). [CrossRef]
  13. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett. 25, 710–712 (2000). [CrossRef]
  14. I. K. Hwang, S. H. Yun, and B. Y. Kim, “Long-period fiber gratings based on periodic microbends,” Opt. Lett. 24, 1263–1265 (1999). [CrossRef]
  15. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996). [CrossRef]
  16. T.-Y. Tang, P.-Y. Tseng, C.-Y. Chiu, C.-N. Lin, C. C. Yang, Y.-W. Kiang, and K.-J. Ma, “Long-period fiber grating effects induced by double-sided loading,” Opt. Eng. 42, 1910–1914 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited