OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 8 — Mar. 10, 2012
  • pp: 1071–1075

All-fiber broadband supercontinuum source with high efficiency in a step-index high nonlinear silica fiber

Weiqing Gao, Meisong Liao, Lingzhen Yang, Xin Yan, Takenobu Suzuki, and Yasutake Ohishi  »View Author Affiliations

Applied Optics, Vol. 51, Issue 8, pp. 1071-1075 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (350 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an all-fiber broadband supercontinuum (SC) source with high efficiency in a step-index high nonlinear silica fiber, which was pumped by a 1557 nm subpicosecond-pulse laser in the normal dispersion region. The broad SC spectrum covers the spectral range from 840 to 2390 nm, and the 10 dB bandwidth from 1120 nm to 2245 nm of the SC covers one octave, assuming the peaks near 1550 nm were filtered. The SC source system is constructed by all-fiber components, which can be fusion-spliced together directly with low loss, less than 0.1 dB. Thus the SC source has high energy transfer efficiency from the pump source. The maximum SC average power of 332 mW is obtained, including the peaks near 1550 nm. The spectral density for the 10 dB bandwidth is in the range from 17.3 to 7.3dBm/nm.

© 2012 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

Original Manuscript: September 8, 2011
Revised Manuscript: November 13, 2011
Manuscript Accepted: November 23, 2011
Published: March 6, 2012

Weiqing Gao, Meisong Liao, Lingzhen Yang, Xin Yan, Takenobu Suzuki, and Yasutake Ohishi, "All-fiber broadband supercontinuum source with high efficiency in a step-index high nonlinear silica fiber," Appl. Opt. 51, 1071-1075 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  2. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photon. 3, 85–90 (2009).
  3. C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, “Gigahertz-repetition-rate mode-locked fiber laser for continuum generation,” Opt. Lett. 25, 1418–1420 (2000). [CrossRef]
  4. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microestructured optical fibers,” Meas. Sci. Technol. 12, 854–858 (2001). [CrossRef]
  5. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical–aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27, 2010–2012 (2002). [CrossRef]
  6. C. Lin and R. H. Stolen, “New nanosecond continuum for exited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976). [CrossRef]
  7. C. Chaudhari, T. Suzuki, and Y. Ohishi, “Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers,” J. Lightwave Technol. 27, 2095–2099 (2009).
  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, 1999), postdeadline paper CPD8.
  9. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  10. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001). [CrossRef]
  11. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002). [CrossRef]
  12. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11, 3568–3573 (2003). [CrossRef]
  13. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082–5087 (2004). [CrossRef]
  14. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009). [CrossRef]
  15. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009). [CrossRef]
  16. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010). [CrossRef]
  17. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000). [CrossRef]
  18. V. A. Arkhireev, A. E. Korolev, D. A. Nolan, and V. V. Solov’ev, “High-efficiency generation of a supercontinuum in an optical fiber,” Opt. Spectrosc. 94, 632–637 (2003).
  19. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28, 1820–1822 (2003). [CrossRef]
  20. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express 12, 317–324 (2004). [CrossRef]
  21. F. Poletti, X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson, “All-solid highly nonlinear single mode fibers with a tailored dispersion profile,” Opt. Express 19, 66–80 (2011). [CrossRef]
  22. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, and A. Yablon, “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28, 643–645 (2003). [CrossRef]
  23. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
  24. J. W. Nicholson, and M. F. Yan, “Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550 nm,” Opt. Express 12, 679–688 (2004). [CrossRef]
  25. J. W. Nicholson, A. D. Yablon, M. F. Yan, P. Wisk, R. Bise, D. J. Trevor, J. Alonzo, T. Stockert, J. Fleming, E. Monberg, F. Dimarcello, and J. Fini, “Coherence of supercontinua generated by ultrashort pulses compressed in optical fibers,” Opt. Lett. 33, 2038–2040 (2008). [CrossRef]
  26. J. W. Nicholson, R. Bise, J. Alonzo, T. Stockert, D. J. Trevor, F. Dimarcello, E. Monberg, J. Fini, P. S. Westbrook, K. Feder, and L. Grüner-Nielsen, “Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber,” Opt. Lett. 33, 28–30 (2008). [CrossRef]
  27. M. R. A. Moghammad, S. W. Harun, R. Akbari, and H. Ahmad, “Flatly broadened supercontinuum generation in nonlinear fibers using a mode-locked bismuth oxide based erbium doped fiber laser,” Laser Phys. Lett. 8, 369–375 (2011).
  28. T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited