OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 8 — Mar. 10, 2012
  • pp: 1076–1085

Generation of midfield concentrated beam arrays using periodic metal annular apertures

Hwi Kim, Jaebum Cho, Jihwan Park, Seungoh Han, and Sungkyu Seo  »View Author Affiliations


Applied Optics, Vol. 51, Issue 8, pp. 1076-1085 (2012)
http://dx.doi.org/10.1364/AO.51.001076


View Full Text Article

Enhanced HTML    Acrobat PDF (1320 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Generation of minimally diffracting beam arrays in the midfield region using periodic metal annular apertures is investigated. The relations between the patterns of the diffraction fields and the structural parameters of the periodic metal annular aperture are numerically analyzed. Material dependent transmission characteristics are also studied with finite difference time-domain simulation. The results reveal that the beam concentration efficiency and axial intensity uniformity have a trade-off restriction due to strong inter-aperture interference and surface plasmon mediates the transmission efficiency of the periodic annular apertures. The design criteria of the metal annular aperture to achieve the strong and uniform beam arrays are addressed.

© 2012 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(240.6680) Optics at surfaces : Surface plasmons
(170.2945) Medical optics and biotechnology : Illumination design

ToC Category:
Diffraction and Gratings

History
Original Manuscript: August 26, 2011
Revised Manuscript: November 17, 2011
Manuscript Accepted: November 17, 2011
Published: March 6, 2012

Citation
Hwi Kim, Jaebum Cho, Jihwan Park, Seungoh Han, and Sungkyu Seo, "Generation of midfield concentrated beam arrays using periodic metal annular apertures," Appl. Opt. 51, 1076-1085 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-8-1076


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  4. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Tunable enhanced light transmission through a single subwavelength aperture,” Adv. Mater. 11, 860–862 (1999). [CrossRef]
  5. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef]
  6. F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugation,” Appl. Phys. Lett. 83, 4500–4502 (2003). [CrossRef]
  7. P. T. Worthinga and W. L. Barnes, “Efficient coupling of surface plasmon polaritons to radiation using a bi-grating,” Appl. Phys. Lett. 79, 3035 (2001). [CrossRef]
  8. H. Kim, J. Park, and B. Lee, “Finite-size nondiffracting beam from a subwavelength metallic hole with concentric dielectric gratings,” Appl. Opt. 48, G68–G72 (2009). [CrossRef]
  9. S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271–2276 (2007). [CrossRef]
  10. H. Ko, H. C. Kim, and M. Cheng, “Light transmission through a metallic/dielectric nano-optic lens,” J. Vac. Sci. Technol. B 26, 2188–2191 (2008). [CrossRef]
  11. D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE 4, e6320 (2009).
  12. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef]
  13. S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lensfree blood analysis on a chip,” Anal. Chem. 82, 4621–4627 (2010). [CrossRef]
  14. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004). [CrossRef]
  15. M. J. Weber, Handbook of Optical Materials (CRC, 2003).
  16. S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002). [CrossRef]
  17. G. T. D. Francia, “Super-gain antennas and optical resolving power,” Il Nuovo Cimento 9, 426–438 (1952).
  18. J. L. Harris, “Diffraction and resolving power,” J. Opt. Soc. Am. 54, 931–933 (1964). [CrossRef]
  19. A. Ranfagni, D. Mugnai, and R. Ruggeri, “Beyond the diffraction limit: super-resolving pupils,” J. Appl. Phys. 95, 2217–2222 (2004). [CrossRef]
  20. H. I. Smith, “A proposal for maskless, zone-plate-array nanolithography,” J. Vac. Sci. Technol. B 14, 4318–4322 (1996). [CrossRef]
  21. P. Saari, K. Reivelt, and H. Valtna, “Ultralocalized superluminal light pulses,” Laser Physics 17, 297–301 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited