OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 8 — Mar. 10, 2012
  • pp: 1086–1094

Reactive self-tracking solar concentrators: concept, design, and initial materials characterization

Katherine A. Baker, Jason H. Karp, Eric J. Tremblay, Justin M. Hallas, and Joseph E. Ford  »View Author Affiliations


Applied Optics, Vol. 51, Issue 8, pp. 1086-1094 (2012)
http://dx.doi.org/10.1364/AO.51.001086


View Full Text Article

Enhanced HTML    Acrobat PDF (1359 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Étendue limits angular acceptance of high-concentration photovoltaic systems and imposes precise two-axis mechanical tracking. We show how a planar micro-optic solar concentrator incorporating a waveguide cladding with a nonlinear optical response to sunlight can reduce mechanical tracking requirements. Optical system designs quantify the required response: a large, slow, and localized increase in index of refraction. We describe one candidate materials system: a suspension of high-index particles in a low-index fluid combined with a localized space-charge field to increase particle density and average index. Preliminary experiments demonstrate an index change of aqueous polystyrene nanoparticles in response to a low voltage signal and imply larger responses with optimized nanofluidic materials.

© 2012 Optical Society of America

OCIS Codes
(220.1770) Optical design and fabrication : Concentrators
(350.6050) Other areas of optics : Solar energy
(160.4236) Materials : Nanomaterials

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: September 28, 2011
Manuscript Accepted: November 1, 2011
Published: March 6, 2012

Citation
Katherine A. Baker, Jason H. Karp, Eric J. Tremblay, Justin M. Hallas, and Joseph E. Ford, "Reactive self-tracking solar concentrators: concept, design, and initial materials characterization," Appl. Opt. 51, 1086-1094 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-8-1086


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kurtz, “Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry,” (NREL, 2010).
  2. H. Ullal, R. Mitchell, B. Keyes, K. VanSant, B. von Roedern, M. Symko-Davies, and V. Kane, “Progress of the photovoltaic technology incubator project towards an enhanced U. S. manufacturing base,” presented at the 37th IEEE Photovoltaic Specialists Conference (PVSC 37), Seattle (19–24June2011).
  3. J. W. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011). [CrossRef]
  4. W. T. Welford and R. Winston, The Optics of Non-imaging Concentrators: Light and Solar Energy (Academic, 1978).
  5. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15, 2299–2300(1976). [CrossRef]
  6. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008). [CrossRef]
  7. G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010). [CrossRef]
  8. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 137–144 (2010). [CrossRef]
  9. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011). [CrossRef]
  10. C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12, 754–759(2006).
  11. S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. 20, 2044–2049 (2008). [CrossRef]
  12. B. L. Unger, G. R. Schmidt, and D. T. Moore, “Dimpled planar lightguide solar concentrators,” in OSA International Optical Design Conference (Optical Society of America, 2010).
  13. J. P. Morgan, “Light-guide solar panel and method of fabrication thereof,” Morgan Solar, Inc. World Intellectual Property Organization, WO 2008/131561, 11June2008.
  14. S. Ghosh and D. S. Schultz, “Solar energy concentrator,” Banyan Energy, Inc., U.S. Patent 7,672,549B2 (2March2010).
  15. J. M. Hallas, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Lateral translation micro-tracking of planar micro-optic solar concentrator,” Proc. SPIE 7769, 776904 (2010). [CrossRef]
  16. F. Duerr, Y. Meuret, and H. Thienpont, “Tracking integration in concentrating photovoltaics using laterally moving optics,” Opt. Express 19, A207–A218 (2011). [CrossRef]
  17. P. H. Schmaelzle and G. L. Whiting, “Lower critical solution temperature (LCST) polymers as a self adaptive alternative to mechanical tracking for solar energy harvesting devices,” presented at the MRS Fall Meeting, Boston (29 November–3 December2010).
  18. A. Rabl, Active Solar Collectors and Their Applications(Oxford University, 1985).
  19. A. Ashkin, J. M. Dziedzic, and P. W. Smith, “Continuous-wave self-focusing and self-trapping of light in artificial Kerr media,” Opt. Lett. 7, 276–278 (1982). [CrossRef]
  20. V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc. 98, 466–469 (2005). [CrossRef]
  21. R. Gordon and J. T. Blakely, “Particle-optical self-trapping,” Phys. Rev. A 75, 8–11 (2007). [CrossRef]
  22. M. Kuzyk, Polymer Fiber Optics (CRC/Taylor & Francis, 2007).
  23. W. M. Lee, R. El-Ganainy, D. N. Christodoulides, K. Dholakia, and E. M. Wright, “Nonlinear optical response of colloidal suspensions,” Opt. Express 17, 10277–10289 (2009). [CrossRef]
  24. H. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22, 869–871 (1951). [CrossRef]
  25. T. Jones, Electromechanics of Particles (Cambridge University, 1995).
  26. D. Chen, H. Du, and C. Y. Tay, “Rapid concentration of nanoparticles with DC dielectrophoresis in focused electric fields,” Nanoscale Res. Lett. 5, 55–60 (2010). [CrossRef]
  27. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005). [CrossRef]
  28. S. J. Williams, A. Kumar, and S. T. Wereley, “Electrokinetic patterning of colloidal particles with optical landscapes,” Lab Chip 8, 1879–1882 (2008). [CrossRef]
  29. J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17, 342–350(2008). [CrossRef]
  30. R. Himmelhuber, P. Gangopadhyay, R. A. Norwood, D. A. Loy, and N. Peyghambarian, “Titanium oxide sol-gel films with tunable refractive index,” Opt. Mat. Express 1, 252–258 (2011).
  31. R. A. Norwood, Department of Optical Sciences, University of Arizona, (personal communication, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited