OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 8 — Mar. 10, 2012
  • pp: 1109–1114

Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers

Timothy D. Corrigan, Dong Hun Park, H. Dennis Drew, Shy-Hauh Guo, Paul W. Kolb, Warren N. Herman, and Raymond J. Phaneuf  »View Author Affiliations

Applied Optics, Vol. 51, Issue 8, pp. 1109-1114 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (490 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a periodic multilayer structure of dielectric and metal interlayers to achieve a near-perfect broadband absorber of mid-infrared radiation. We examine the influence of four factors on its performance: (1) the interlayer metal conductance, (2) the number of dielectric layers, (3) a nanopatterned antireflective layer, and (4) a reflective metallic bottom layer for backreflection. Absorption characteristics greater than 99% of the 300 K and 500 K blackbody spectra are found for the optimized structures. Incident angle and polarization dependence of the absorption spectra are examined. We also investigate the possibility of fabricating a nanopatterned antireflective layer to maximize absorption.

© 2012 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.4170) Optical devices : Multilayers
(310.1210) Thin films : Antireflection coatings
(310.4165) Thin films : Multilayer design
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Optical Design and Fabrication

Original Manuscript: September 28, 2011
Revised Manuscript: January 4, 2012
Manuscript Accepted: January 4, 2012
Published: March 7, 2012

Timothy D. Corrigan, Dong Hun Park, H. Dennis Drew, Shy-Hauh Guo, Paul W. Kolb, Warren N. Herman, and Raymond J. Phaneuf, "Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers," Appl. Opt. 51, 1109-1114 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric material,” Adv. Mater. 19, 1043–1053 (2007). [CrossRef]
  2. L. E. Bell, “Cooling, heating, generating power, and recovering waste heat with thermoelectric systems,” Science 321, 1457–1461 (2008). [CrossRef]
  3. T. M. Tritt, H. Bottner, and L. Chen, “Direct solar thermal energy conversion,” MRS Bull. 33, 366–368 (2008). [CrossRef]
  4. T. M. Tritt and M. A. Subramanian, “Thermoelectric materials, phenomena, and applications: a bird’s eye view,” MRS Bull. 31, 188–194 (2006). [CrossRef]
  5. G. S. Nolas, J. Poon, and M. Kanatzidis, “Recent developments in bulk thermoelectric materials,” MRS Bull. 31, 199–205 (2006). [CrossRef]
  6. I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, “Fabrication of an all-oxide thermoelectric power generator,” Appl. Phys. Lett. 78, 3627–3629 (2001). [CrossRef]
  7. E. S. Reddy, J. G. Noudem, S. Herbert, and C. Goupil, “Fabrication and properties of four-leg oxide thermoelectric modules,” J. Phys. D 38, 3751–3755 (2005). [CrossRef]
  8. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008). [CrossRef]
  9. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405(2008). [CrossRef]
  10. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMCC4.
  11. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010). [CrossRef]
  12. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008). [CrossRef]
  13. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009). [CrossRef]
  14. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef]
  15. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009). [CrossRef]
  16. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008). [CrossRef]
  17. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008). [CrossRef]
  18. J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009). [CrossRef]
  19. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009). [CrossRef]
  20. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009). [CrossRef]
  21. A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686–1689 (1988). [CrossRef]
  22. J. J. Monzón, T. Yonte, L. L. Sánchez-Soto, and Á. Felipe, “Optimized broadband wide-angle absorber structures,” Appl. Opt. 47, 6366–6370 (2008). [CrossRef]
  23. J. J. Monzón and L. L. Sánchez-Soto, “Optical performance of absorber structures for thermal detectors,” Appl. Opt. 33, 5137–5141 (1994). [CrossRef]
  24. P. Eriksson, J. Y. Andersson, and G. Stemme, “Interferometric, low thermal mass IR-absorber for thermal infrared detectors,” Phys. Scr. T 54, 165–168 (1994). [CrossRef]
  25. H. A. MacLeod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
  26. E. D. Pailik, ed., Handbook of Optical Constants of Solids, Vol. 3 (Academic, 1998).
  27. J. M. Ziman, Electrons and Phonons (Oxford University, 2001).
  28. V. T. Bly and J. T. Cox, “Infrared absorber for ferroelectric detectors,” Appl. Opt. 33, 26–30 (1994). [CrossRef]
  29. D. H. Park, C. H. Lee, and W. N. Herman, “Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures,” Opt. Express 14, 8866–8884 (2006). [CrossRef]
  30. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  31. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  32. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  33. J. Křepelka, “Maximally flat antireflection coatings,” Jemna Mech. Opt. 3–5, 53–56 (1992).
  34. P. Baumeister, “Antireflection coatings with Chebyshev or Butterworth response: design,” Appl. Opt. 25, 4568–4570(1986). [CrossRef]
  35. Admittance values are calculated using y=Zod/ρ as mentioned above in the text, and assuming a value of 1.5×10−6  Ω-m for the resistivity of Ni For Cr. For the calculations, only the thickness and n and k values are used. We note that our NiCr films are actually less thick than those of Bly and Cox [28]. However, modifying the fit parameters only slightly modifies the optimal thickness required to obtain an optimal absorbance. In practice, experimental values of thickness may need to be varied to obtain the desired properties.
  36. I. M. Thomas, “Method for the preparation of porous silica antireflection coatings varying in refractive index from 1.22 to 1.44,” Appl. Opt. 31, 6145–6149 (1992). [CrossRef]
  37. A. E. Pap, K. Kordas, J. Vahakangas, A. Uusimaki, S. Leppavuori, L. Pilon, and S. Szatmari, “Optical properties of porous silicon. Part III: comparison of experimental and theoretical results,” Opt. Mater. 28, 506–513 (2006). [CrossRef]
  38. M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496, 505–514 (2006). [CrossRef]
  39. J. Wang, J. Shao, and Z. Fan, “Extended effective medium model for refractive indices of thin films with oblique columnar structure,” Opt. Commun. 247, 107–110 (2005). [CrossRef]
  40. W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, 3897–3902 (1973). [CrossRef]
  41. M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi C 4, 1986–1990 (2007). [CrossRef]
  42. P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74, 205103 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited