OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 8 — Mar. 10, 2012
  • pp: 1115–1121

Temperature-dependent photoluminescence spectra of Er-Tm codoped calcium boroaluminate glasses

Fei Xu, Lingling Zheng, Mingzhu Li, Fang Lu, Zhongquan Ma, Zuimin Jiang, Pinghua Zhou, Jianwei Shi, and Yu Pu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 8, pp. 1115-1121 (2012)
http://dx.doi.org/10.1364/AO.51.001115


View Full Text Article

Enhanced HTML    Acrobat PDF (688 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The temperature dependence of photoluminescence (PL) spectra of Er-Tm codoped calcium boroaluminate (CABAL) glasses with different dopant concentrations was investigated under 15–298 K, by pumping at 795 nm. The intensities of three band emissions located at 1.46, 1.53, and 1.80 μm decreased monotonically when increasing the temperature from at lower concentrations. However, the emissions peaked at 1.80 μm increase with the increasing temperature at higher concentrations. This was attributed to the increasing of cross relaxation (CR) resulting from the high doping concentration of Tm ions. This was evidenced by the much shorter fluorescence lifetime of 56 μs for the F34 emission due to F34H36 transition for the CABAL glass codoped with 2.00 mol.% Tm2O3, in comparison with 185 μs for that of 0.2 mol.% Tm2O3. The energy transfer (ET) and CR processes between Er3+ and Tm3+ ions have been discussed at different doping concentrations and operating temperatures. The nonexponential character of the decays of I413/2 and H34 with the increasing concentration indicated the occurring of a dipole-dipole quenching processes in the framework of a diffusion-limited regime. The average critical distances of CR between Tm3+ ions and ET between Er3+ and Tm3+ ions were approximately 1 nm.

© 2012 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 15, 2011
Manuscript Accepted: October 23, 2011
Published: March 7, 2012

Citation
Fei Xu, Lingling Zheng, Mingzhu Li, Fang Lu, Zhongquan Ma, Zuimin Jiang, Pinghua Zhou, Jianwei Shi, and Yu Pu, "Temperature-dependent photoluminescence spectra of Er-Tm codoped calcium boroaluminate glasses," Appl. Opt. 51, 1115-1121 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-8-1115


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Xiao, R. Serna, and C. N. Afonso, “Broadband infrared emission from Er−Tm:Al2O3 thin films,” Appl. Phys. Lett. 87, 111103 (2005). [CrossRef]
  2. D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101, 113511 (2007). [CrossRef]
  3. M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001). [CrossRef]
  4. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–574 (2003). [CrossRef]
  5. L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er—Tm-codoped tellurite fibre,” Opt. Express 12, 2429–2434 (2004). [CrossRef]
  6. A. S. S. de Camargo, L. A. O. Nunes, E. R. Botero, D. Garcia, and J. A. Eiras, “Spectroscopy and energy transfer characteristics of PLZT:Tm3+ transparent ceramics,” Chem. Phys. Lett. 410, 156–159 (2005). [CrossRef]
  7. H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Broadband amplified spontaneous emission from an Er3+-Tm3+-codoped silica fiber,” Opt. Lett. 28, 161–163 (2003). [CrossRef]
  8. F. Xu, R. Serna, M. J. de Castro, J. M. Fernandez Navarro, and Z. Xiao, “Broadband infrared emission of erbium—thulium-codoped calcium boroaluminate glasses,” Appl. Phys. B 99, 263–270 (2010). [CrossRef]
  9. A. E. Owen, “Properties of glasses in the system CaO-B2O3-Al2O3: Part 1. The DC conductivity and structure of calcium boroaluminate glasses,” Phys. Chem. Glasses 2, 87–98 (1961).
  10. A. E. Owen, “Properties of glasses in the system CaO-Al2O3-B2O3,” Phys. Chem. Glasses 2, 152 (1961).
  11. R. Kudesia, L. D. Pye, R. A. Condrate, and J. S. Hayden, “Optical properties of glasses in the system CaO-Al2O3-B2O3,” Proc. SPIE 2287, 164–173 (1994). [CrossRef]
  12. H. N. Lou, X. Wang, Z. S. Tao, F. Lu, Z. M. Jiang, L. L. Mai, and F. Xu, “Temperature-dependent photoluminescence spectra of Er—Tm-codoped Al2O3 thin film,” Appl. Surf. Sci. 255, 8217–8220 (2009). [CrossRef]
  13. R. Reisfeid and Y. Eckstein, “Dependence of spontaneous emission and nonradiative relaxation of Tm3+ and Er3+ on glass host and temperature,” J. Chem. Phys. 63, 4001–4012 (1975). [CrossRef]
  14. D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride—thorium fluoride glass,” Phys. Rev. B 39, 80–90 (1989). [CrossRef]
  15. A. Lupei, V. Lupei, S. Georgescu, I. Ursu, V. I. Zhekov, T. M. Murina, and A. M. Prokhorov, “Many-body energy-transfer processes between Er3+ ions in yttrium aluminum garnet,” Phys. Rev. B 41, 10923–10932 (1990). [CrossRef]
  16. D. Hulsenberg and J. Bruntsch, “Elktrisch hoch isolierende Glaser im System CaO-Al2O3-B2O3,” Silikattechnik 3, 378–380 (1987).
  17. J. Wang, H. W. Song, X. G. Kong, and W. Xu, “Temperature dependence of the fluorescence of Eu3+-ion doped in various silicate glasses,” J. Appl. Phys. 91, 9466–9470 (2002). [CrossRef]
  18. P. Nachimuthu and R. Jagannathan, “Optical absorption spectral studies of Pr3+, Nd3+, Er3+ and Tm3+ ions in the CaO-B2O3-Al2O3 glass system,” Phys. Chem. Glasses 36, 194–200 (1995).
  19. M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971). [CrossRef]
  20. M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784(1967). [CrossRef]
  21. M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldondo, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo, and F. J. Carrillo-Romo, “Yb3+quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+,” Opt. Mater. 31, 252–260 (2008). [CrossRef]
  22. Y. Wuzhao, C. Yonghu, and Y. Min, “Quenching mechanism of Er3+ emissions in Er3+- and Er3+/Yb3+-doped SrAl12O19nanophosphors,” J. Rare Earths 29, 202–206 (2011). [CrossRef]
  23. Z. Xiao, R. Serna, and C. N. Afonso, “Broadband emission in Er—Tm codoped Al2O3 films: the role of energy transfer from Er to Tm,” J. Appl. Phys. 101, 033112 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited