OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 8 — Mar. 10, 2012
  • pp: 1156–1161

Photothermal self-phase-modulation technique for absorption measurements on high-reflective coatings

Jessica Steinlechner, Lars Jensen, Christoph Krüger, Nico Lastzka, Sebastian Steinlechner, and Roman Schnabel  »View Author Affiliations

Applied Optics, Vol. 51, Issue 8, pp. 1156-1161 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (338 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a new measurement technique for the optical absorption of high-reflection coatings. Our technique is based on photothermal self-phase modulation and exploits the deformation of cavity Airy peaks that occurs due to coating absorption of intracavity light. The mirror whose coating is under investigation needs to be the input mirror of a high-finesse cavity. Our example measurements were performed on a high-reflection SiO2Ta2O5 coating in a three-mirror ring-cavity setup at a wavelength of 1064 nm. The optical absorption of the coating was determined to be α=(23.9±2.0)·106 per coating. Our result is in excellent agreement with an independently performed laser calorimetry measurement that gave a value of α=(24.4±3.2)·106 per coating. Since the self-phase modulation in our coating-absorption measurement affects mainly the propagation through the cavity input mirror, our measurement result is practically uninfluenced by the optical absorption of the other cavity mirrors.

© 2012 Optical Society of America

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(120.6810) Instrumentation, measurement, and metrology : Thermal effects

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 23, 2011
Revised Manuscript: January 18, 2012
Manuscript Accepted: January 18, 2012
Published: March 8, 2012

Jessica Steinlechner, Lars Jensen, Christoph Krüger, Nico Lastzka, Sebastian Steinlechner, and Roman Schnabel, "Photothermal self-phase-modulation technique for absorption measurements on high-reflective coatings," Appl. Opt. 51, 1156-1161 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Müller, O. Palashov, V. Quetschke, D. H. Reitze, R. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Characterization of thermal effects in the Enhanced LIGO Input Optics,” arXiv:1112.1737v1 (2011).
  2. W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detectors,” Phys. Rev. A 44, 7022–7036 (1991). [CrossRef]
  3. V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264, 1–10 (1999). [CrossRef]
  4. K. Arai, R. Takahashi, D. Tatsumi, K. Izumi, Y. Wakabayashi, H. Ishizaki, M. Fukushima, T. Yamazaki, M.-K. Fujimoto, A. Takamori, K. Tsubono, R. DeSalvo, A. Bertolini, S. Márka, V. Sannibale, T. Uchiyama, O. Miyakawa, S. Miyoki, K. Agatsuma, T. Saito, M. Ohashi, K. Kuroda, I. Nakatani, S. Telada, K. Yamamoto, T. Tomaru, T. Suzuki, T. Haruyama, N. Sato, A. Yamamoto, and T. Shintomi, “Status of Japanese gravitational wave detectors,” Class. Quantum Grav. 26, 204020 (2009). [CrossRef]
  5. N. Lastzka, J. Steinlechner, S. Steinlechner, and R. Schnabel, “Measuring small absorptions by exploiting photothermal self-phase modulation,” Appl. Opt. 49, 5391–5398 (2010). [CrossRef]
  6. S. Ast, R. M. Nia, A. Schönbeck, N. Lastzka, J. Steinlechner, T. Eberle, M. Mehmet, S. Steinlechner, and R. Schnabel, “High-efficiency frequency doubling of continuous-wave laser light,” Opt. Lett. 36, 3467–3469 (2011). [CrossRef]
  7. N. Uehara, “Ring mode cleaner for the initial LIGO 10 Watt laser,” Internal LIGO Report, Stanford University, Stanford, Calif., USA, 1997.
  8. P. Hello and J. Vinet, “Analytical models of thermal aberrations in massive mirrors heated by high power laser beams,” J. Phys. France 51, 1267 (1990). [CrossRef]
  9. P. Hello and J. Vinet, “Numerical model of transient thermal effects in high power optical resonators,” J. Phys. France 3, 717 (1993). [CrossRef]
  10. ATFilms, USA, http://www.atfilms.com .
  11. B. Hage, A. Samblowski, and R. Schnabel, “Towards Einstein-Podolsky-Rosen quantum channel multiplexing,” Phys. Rev. A 81, 062301 (2010). [CrossRef]
  12. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” arXiv:0805.0091 (2008).
  13. Valley Design Corporation, Santa Cruz, Calif., USA http://www.valleydesign.com .
  14. Corning Inc., USA, http://www.corning.com .
  15. U. Willamowski, T. Groß, D. Ristau, and H. Welling, “Calorimetric measurement of optical absorption at 532 nm and 1064 nm according to ISO/FDIS 11551,” Proc. SPIE 2870, 483–494 (1996). [CrossRef]
  16. Photonic Cleaning Technologies, Platteville, Wis., USA http://www.photoniccleaning.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited