OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 9 — Mar. 20, 2012
  • pp: 1287–1296

Modified annular photonic crystals for enhanced band gap properties and iso-frequency contour engineering

Ibrahim H. Giden and Hamza Kurt  »View Author Affiliations


Applied Optics, Vol. 51, Issue 9, pp. 1287-1296 (2012)
http://dx.doi.org/10.1364/AO.51.001287


View Full Text Article

Enhanced HTML    Acrobat PDF (1861 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper complete photonic bandgap (PBG) and iso-frequency contours (IFCs) of two-dimensional modified annular photonic crystals (MAPC) for four different configurations are numerically studied and calculated by applying plane wave expansion method. The effects of opto-geometric parameters of the designed unit-cell structures are clearly demonstrated in terms of opening frequency gaps and appearing tilted band curves. Optimal structures with large PBGs are reported. The absolute gap can be increased to a maximum value of Δ ω / ω = 0.1766 ( 2 π c / a ) , where a is the lattice constant and c is the speed of light. The incorporation of additional parameters inside the unit cell of photonic crystal enables an extra degree of freedom for controlling the flow of light even in the absence of structural defects. The finite-difference time-domain method is utilized to depict the MAPC’s light deflection and guiding characteristics. These proposed structures are likely to be promising candidates for applications that require polarization insensitivity due to providing large complete PBGs and possessing special IFCs.

© 2012 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.5293) Materials : Photonic bandgap materials
(050.5298) Diffraction and gratings : Photonic crystals
(230.5298) Optical devices : Photonic crystals
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: August 30, 2011
Revised Manuscript: January 5, 2012
Manuscript Accepted: January 6, 2012
Published: March 15, 2012

Citation
Ibrahim H. Giden and Hamza Kurt, "Modified annular photonic crystals for enhanced band gap properties and iso-frequency contour engineering," Appl. Opt. 51, 1287-1296 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-9-1287


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987). [CrossRef]
  2. S. John, “Strong localization of photons in certain dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals Modeling the Flow of Light (Princeton University, 1995).
  4. E. Yablonovitch, “Photonic band-gap crystals,” J. Phys. Condens. Matter 5, 2443–2460 (1993). [CrossRef]
  5. R. K. Sinha and Y. Kalra, “Design of optical waveguide polarizer using photonic band gap,” Opt. Express 14, 10790–10794 (2006). [CrossRef]
  6. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12, 1295–1297(2000). [CrossRef]
  7. O. Painter, J. Vučkovič, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999). [CrossRef]
  8. J. Scheuer and A. Yariv, “Annular Bragg defect mode resonators,” J. Opt. Soc. Am. B 20, 2285–2291 (2003). [CrossRef]
  9. H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87, 041108 (2005).
  10. H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguide for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87, 241119(2005).
  11. P. R. Villeneuve and M. Piche, “Photonic band gaps in two dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969–4972 (1992). [CrossRef]
  12. C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77, 2949–2952 (1996). [CrossRef]
  13. X. Zhu, Y. Zhang, D. Chandra, S.-C. Cheng, J. M. Kikkawa, and S. Yang, “Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly(dimethylsiloxane) membranes under elastic deformation,” Appl. Phys. Lett. 93, 161911 (2008).
  14. F. Wen, S. David, X. Checoury, M. El Kurdi, and P. Boucaud, “Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations,” Opt. Express 16, 12278–12289 (2008). [CrossRef]
  15. W. Kuang, Z. Hou, Y. Liu, and H. Li, “The bandgap of a photonic crystal with triangular dielectric rods in a honeycomb lattice,” J. Opt. A 7, 525–528 (2005). [CrossRef]
  16. S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87, 061107 (2005). [CrossRef]
  17. Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998). [CrossRef]
  18. B. Rezaei and M. Kalafi, “Engineering absolute bandgap in anisotropic hexagonal photonic crystals,” Opt. Commun. 266, 159–163 (2006). [CrossRef]
  19. B. Rezaei and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282, 2861–2869 (2009). [CrossRef]
  20. H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13, 10316–10326 (2005). [CrossRef]
  21. H. Kurt, R. Hao, Y. Chen, J. Feng, J. Blair, C. Summers, D. S. Citrin, and Z. Zhou, “Design of annular photonic crystal slabs,” Opt. Lett. 33, 1614–1616 (2008). [CrossRef]
  22. J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009). [CrossRef]
  23. J. Witzens and A. Scherer, “Efficient excitation of self-collimated beams and single Bloch modes in planar photonic crystals,” J. Opt. Soc. Am. A 20, 935–940 (2003). [CrossRef]
  24. T. Baba and M. Nakamura, “Photonic crystal light deflection devices using the superprism effect,” IEEE J. Quantum Electron. 38, 909–914 (2002). [CrossRef]
  25. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  26. A. F. Matthews, S. F. Mingaleev, and Y. S. Kivshar, “Band-gap engineering and defect modes in photonic crystals with rotated hexagonal holes,” Laser Phys. 14, 631–634 (2004).
  27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  28. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  29. M. Qiu and S. He, “Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap,” J. Opt. Soc. Am. B 17, 1027–1030(2000). [CrossRef]
  30. X. L. Yang, L. Z. Cai, Y. R. Wang, G. Y. Dong, X. X. Shen, X. F. Meng, and Y. Hu, “Large complete bandgaps in a two-dimensional square photonic crystal with isolated single-atom dielectric rods in air,” Nanotechnology 19, 025201 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited