OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 9 — Mar. 20, 2012
  • pp: 1357–1360

Comparison of surface plasmon resonance responses to dry/wet air for Ag, Cu, and Au/SiO2

Jinlian Hu, Peisheng Liu, and Lu Chen  »View Author Affiliations

Applied Optics, Vol. 51, Issue 9, pp. 1357-1360 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the optical absorption spectra of Ag-, Cu-, and Au-mesoporous SiO2 systems, respectively, after the samples were heated in dry air and in wet air. As expected, dry air at high temperature leads to the surface plasmon resonance (SPR) disappearance of Ag-SiO2 and Cu-SiO2 and a slight SPR increase of Au-SiO2. However, a small amount of water vapor in air induces a strong SPR appearance for both Ag- and Au-containing samples, indicating that water vapor plays an abnormal reduction effect on both Ag and Au species in mesoporous SiO2, despite the fact that it usually plays an oxidation role on Pt-group metals, but it cannot induce the SPR appearance for the Cu-containing sample under the same condition.

© 2012 Optical Society of America

OCIS Codes
(230.0040) Optical devices : Detectors
(230.0230) Optical devices : Optical devices
(260.3910) Physical optics : Metal optics
(280.1120) Remote sensing and sensors : Air pollution monitoring
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: December 1, 2011
Manuscript Accepted: December 15, 2011
Published: March 15, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Jinlian Hu, Peisheng Liu, and Lu Chen, "Comparison of surface plasmon resonance responses to dry/wet air for Ag, Cu, and Au/SiO2," Appl. Opt. 51, 1357-1360 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Jiménez, H. Liu, and E. Fachini, “X-ray photoelectron spectroscopy of silver nanoparticles in phosphate glass,” Mater. Lett. 64, 2046–2048 (2010).
  2. Y. Li, N. Koshizaki, and W. P. Cai, “Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices,” Coordin. Chem. Rev. 255, 357–373 (2011). [CrossRef]
  3. S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology 19, 075710 (2008). [CrossRef]
  4. L. S. Maksimenko, I. E. Matyash, S. P. Rudenko, and B. K. Serdega, “The features of surface plasmon resonance in gold cluster films,” Semicond. Phys. Quantum Electron. Optoelectron. 12, 129–134 (2009).
  5. E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science 326, 1091–1094 (2009). [CrossRef]
  6. V. Hornebecq, M. Antonietti, T. Cardinal, and M. Treguer-Delapierre, “Stable silver nanoparticles immobilized in mesoporous silica,” Chem. Mater. 15, 1993–1999 (2003). [CrossRef]
  7. D. K. Sarkar, F. Cloutier, and M. A. El Khakani, “Electrical switching in sol-gel derived Ag-SiO2 nanocomposite thin films,” J. Appl. Phys. 97, 084302 (2005). [CrossRef]
  8. A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment, ” Appl. Surf. Sci. 205, 323–328 (2003). [CrossRef]
  9. G. De, M. Gusso, and L. Tapfer, “Annealing behavior of silver, copper, and silver-copper nanoclusters in a silica matrix synthesized by the sol-gel technique,” J. Appl. Phys. 80, 6734–6739 (1996). [CrossRef]
  10. J. A. Jiménez, S. Lysenko, H. Liu, E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129, 1546–1554 (2009). [CrossRef]
  11. J. Hu, L. Wang, W. Cai, Y. Li, H. Zeng, L. Zhao, and P. Liu, “Smart and reversible surface plasmon resonance responses to various atmospheres for silver nanoparticles loaded in mesoporous SiO2,” J. Phys. Chem. C 113, 19039–19045 (2009). [CrossRef]
  12. W. Cai, L. Zhang, H. Zhong, and G. He, “Annealing of mesoporous silica loaded with silver nanoparticles within its pores from isothermal sorption,” J. Mater. Res. 13, 2888–2895 (1998). [CrossRef]
  13. H. Bi, W. Cai, H. Shi, and X. Liu, “Optical absorption of Ag oligomers dispersed within pores of mesoporous silica,” Chem. Phys. Lett. 357, 249–254 (2002). [CrossRef]
  14. J. Hu, W. Cai, C. Li, Y. Gan, and L. Chen, “In situ x-ray diffraction study of the thermal expansion of silver nanoparticles in ambient air and vacuum,” Appl. Phys. Lett. 86, 151915 (2005). [CrossRef]
  15. C. Kan, W. Cai, Z. Li, G. Fu, and L. Zhang, “Reduction effect of pore wall and formation of Au nanowires inside monolithic mesoporous silica,” Chem. Phys. Lett. 382, 318–324 (2003). [CrossRef]
  16. J. Hu, W. Lee, W. Cai, L. Tong, and H. Zeng, “Evolution of the optical spectra of an Ag/mesoporous SiO2 nanostructure heat-treated in air and H2 atmospheres,” Nanotechnology 18, 185710 (2007). [CrossRef]
  17. C. Chambers and A. K. Holliday, eds., Inorganic Chemistry (Butterworth, 1982).
  18. S. Z. Baykara, “Experimental solar water thermolysis,” Int. J. Hydrogen Energy 29, 1459–1469 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited