OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 9 — Mar. 20, 2012
  • pp: 1396–1406

Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion

M. L. Jakobsen, H. T. Yura, and S. G. Hanson  »View Author Affiliations


Applied Optics, Vol. 51, Issue 9, pp. 1396-1406 (2012)
http://dx.doi.org/10.1364/AO.51.001396


View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper analyzes the dynamics of objective laser speckles as the distance between the object and the observation plane continuously changes. With the purpose of applying optical spatial filtering velocimetry to the speckle dynamics, in order to measure out-of-plane motion in real time, a rotational symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The spatial filter is here emulated with a CCD camera, and is tested on speckles arising from a real application. The analysis discusses the selectivity of the spatial filter, the nonlinear response between speckle motion and observation distance, and the influence of the distance-dependent speckle size. Experiments with the emulated filters illustrate performance and potential applications of the technology.

© 2012 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.6140) Coherence and statistical optics : Speckle
(030.6600) Coherence and statistical optics : Statistical optics
(070.6110) Fourier optics and signal processing : Spatial filtering
(120.7250) Instrumentation, measurement, and metrology : Velocimetry

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: August 29, 2011
Revised Manuscript: November 10, 2011
Manuscript Accepted: November 10, 2011
Published: March 19, 2012

Citation
M. L. Jakobsen, H. T. Yura, and S. G. Hanson, "Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion," Appl. Opt. 51, 1396-1406 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-9-1396


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Yamaguchi, “Fringe formation in deformation and vibration and measurements using laser light,” Prog. Opt. 22, 271–340 (1985). [CrossRef]
  2. M. Sjödahl, “Some recent advances in electronic speckle photography,” Opt. Lasers Eng. 29, 125–144 (1998). [CrossRef]
  3. M. Sjödahl, and H. O. Saldner, “Three-dimensional deformation field measurements with simultaneous TV holography and electronic speckle photography,” Appl. Opt. 36, 3645–3648 (1997). [CrossRef]
  4. Y. Aizu and T. Asakura, Spatial Filtering Velocimetry, Fundamentals and Applications, Vol. 116 of Springer Series in Optical Sciences (Springer, 2005).
  5. U. Schnell, J. Piot, and R. Dändliker, “Detection of movement with laser speckle patterns: statistical properties,” J. Opt. Soc. Am. A 15, 207–216 (1998). [CrossRef]
  6. M. L. Jakobsen and S. G. Hanson, “Miniaturized lenticular array for laser speckle from solid surfaces,” Meas. Sci. Technol. 15, 1949–1957 (2004). [CrossRef]
  7. N. Takai, T. Iwai, and T. Asakura, “Real time velocity measurements for a diffuse object using zero-crossing of laser speckle,” J. Opt. Soc. Am. 70, 450–455 (1980). [CrossRef]
  8. T. F. Q. Iversen, M. L. Jakobsen, and S. G. Hanson, “Speckle-based three-dimensional velocity measurement using spatial filtering velocimetry,” Appl. Opt. 50, 1523–1533 (2011). [CrossRef]
  9. I. Yamaguchi and S. Komatsu, “Theory and applications of dynamic laser speckles due to in-plane object motion,” Optica Acta 24, 705–724 (1977). [CrossRef]
  10. M. Giglio, S. Musazzi, and U. Perini, “Distance measurement from a moving object based on speckle velocity detection,” Appl. Opt. 20, 721–722 (1981). [CrossRef]
  11. D. V. Semenov, E. Nippolainen, and A. A. Kamshillin, “Fast distance measurements by use of dynamic speckles,” Opt. Lett. 30, 248–250 (2005). [CrossRef]
  12. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomenon, J. C. Dainty, ed. (Springer-Verlag, 1984), pp. 9–75.
  13. A. E. Siegman, Lasers (University Science, 1986).
  14. H. T. Yura, B. Rose, and S. G. Hanson, “Dynamics laser speckle in complex ABCD optical systems,” J. Opt. Soc. Am. A 15, 1160–1166 (1998). [CrossRef]
  15. T. Yoshimura and S. Iwamoto, “Dynamic properties of three-dimensional speckles,” J. Opt. Soc. Am. A 10, 324–328 (1993).
  16. H. T. Yura, S. G. Hanson, R. S. Hansen, and B. Rose, “Three-dimensional speckle dynamics in paraxial optical systems,” J. Opt. Soc. Am. A 16, 1402–1412 (1999). [CrossRef]
  17. S. O. Rice, “Mathematical analysis of random noise,” Bell Syst. Tech. J. 24, 46–159 (1945).
  18. H. Zhang, L. Wang, R. M. Jia, and J. W. Li, “A distance measuring method using visual image processing,” in Proceedings of the 2009 2nd International Congress on Image and Signal Processing (IEEE, 2009), Vols. 1–9, pp. 2275–2279.
  19. N. Takai, T. Iwai, and T. Asakura, “Real time velocity measurements for a diffuse object using zero-crossing of laser speckle,” J. Opt. Soc. Am. 70, 450–455 (1980). [CrossRef]
  20. S. G. Hanson, M. L. Jakobsen, H. C. Petersen, C. Dam-Hansen, and J. Stubager, “Miniaturized optical speckle-based sensor for cursor control,” Proc. SPIE 6341, 63411U (2006).
  21. S. Wolfram, “The Mathematica Book,” 4th ed. (Wolfram Media/Cambridge University, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited