OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 9 — Mar. 20, 2012
  • pp: 1420–1430

Optimization of pump absorption in MOF lasers via multi-long-period gratings: design strategies

Francesco Prudenzano, Luciano Mescia, Tommaso Palmisano, Michele Surico, Marco De Sario, and Giancarlo Cesare Righini  »View Author Affiliations


Applied Optics, Vol. 51, Issue 9, pp. 1420-1430 (2012)
http://dx.doi.org/10.1364/AO.51.001420


View Full Text Article

Enhanced HTML    Acrobat PDF (763 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Different strategies for designing optical couplers, optimized to enhance the pump absorption in the rare-earth-doped core of microstructured fiber lasers, are illustrated. Three kinds/configurations of optical couplers have been designed and compared as examples of the different design strategies which can be followed. Their effectiveness to enhance the performance of an ytterbium-doped, double cladding, microstructured optical fiber laser has been accurately simulated. They consist of a suitable cascade of multiple long-period gratings (MLPGs) inscribed in the fiber core region. The characteristics of the MLPG couplers have been simulated via a homemade computer code based on both rate equations and an extended coupled mode theory. The proposed MLPG couplers seem particularly useful in the case of low rare-earth concentration but, even for a middle-high ytterbium concentration, as NYb=5×1025ions/m3, the slope efficiency S can be increased up to 20%, depending on the fiber length.

© 2012 Optical Society of America

OCIS Codes
(350.2770) Other areas of optics : Gratings
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 11, 2011
Revised Manuscript: January 12, 2012
Manuscript Accepted: January 13, 2012
Published: March 20, 2012

Citation
Francesco Prudenzano, Luciano Mescia, Tommaso Palmisano, Michele Surico, Marco De Sario, and Giancarlo Cesare Righini, "Optimization of pump absorption in MOF lasers via multi-long-period gratings: design strategies," Appl. Opt. 51, 1420-1430 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-9-1420


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007). [CrossRef]
  2. E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 20–29 (2009). [CrossRef]
  3. G. Zhang, M. Wang, C. Yu, Q. Zhou, J. Qiu, L. Hu, and D. Chen, “Efficient generation of watt-level output from short-length nd-doped phosphate fiber lasers,” IEEE Photon. Technol. Lett. 23, 350–352 (2011). [CrossRef]
  4. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47, 471–478 (2011). [CrossRef]
  5. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27, 1565–1570 (2009). [CrossRef]
  6. K. Saitoh, M. Koshiba, T. Hasegawa, and F. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003). [CrossRef]
  7. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000). [CrossRef]
  8. B. H. Lee, Y. Liu, S. B. Lee, S. S. Choi, and J. N. Jang, “Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index,” Opt. Lett. 22, 1769–1771 (1997). [CrossRef]
  9. P. Steivurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt. Express 14, 3007–3014 (2006). [CrossRef]
  10. D. Lee, Y. Jung, Y. S. Jeong, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Highly polarization-dependent periodic coupling in mechanically induced long period grating over air-silica fibers,” Opt. Lett. 31, 296–298 (2006). [CrossRef]
  11. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett. 29, 331–333 (2004). [CrossRef]
  12. J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25, 1306–1312 (2007). [CrossRef]
  13. C. L. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26, 220–227 (2008). [CrossRef]
  14. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462 (1999). [CrossRef]
  15. T. Erdogan, “Cladding-mode resonances in short-and long-period fiber grating filters,” J. Opt. Soc. Am. A 14, 1760–1773 (1997). [CrossRef]
  16. L. Mescia, “Design of long-period gratings in cladding-pumped microstructured optical fiber,” J. Opt. Soc. Am. B 25, 1833–1839 (2008). [CrossRef]
  17. G. Calò, A. D’orazio, M. De Sario, L. Mescia, V. Petruzzelli, L. Allegretti, T. Palmisano, and F. Prudenzano, “Improvement of the pump power coupling in double cladding photonic crystal fiber,” in IEEE/LEOS Winter Topical Meeting Series (IEEE, 2008), pp. 146–147.
  18. S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump-coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006). [CrossRef]
  19. T. Allsop, K. Kalli, K. Zhou, G. Smith, Y. Laia, G. Smith, M. Dubov, D. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Opt. Commun. 281, 5092–5096(2008). [CrossRef]
  20. J. Long, W. Zhi, L. Yange, K. Guiyun, and D. Xiaoyi, “Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers,” Opt. Express 16, 21119–21131 (2008). [CrossRef]
  21. L. Shujing, J. Long, J. Wei, W. Dongning, L. Changrui, and W. Ying, “Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser,” Opt. Express 18, 5496–5503 (2010). [CrossRef]
  22. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18, 26704–26719 (2010).
  23. M. J. F. Digonnet and V. Dangui, “Double-clad fiber lasers and amplifiers having long-period fiber gratings,” European patent EP 1 506 443 B1 (2005).
  24. L. Mescia, T. Palmisano, M. Surico, and F. Prudenzano, “Long-period gratings for the optimization of cladding-pumped microstructured optical fiber laser,” Opt. Mater. 33, 236–240 (2010). [CrossRef]
  25. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23, 4486–4493 (1984). [CrossRef]
  26. R. Paschotta, J. Nilsson, A. Tropper, and D. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997). [CrossRef]
  27. G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium doped holey fibre amplifier,” J. Non-Cryst. Solids 351, 1840–1845 (2005). [CrossRef]
  28. A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad ytterbium doped microstructured fibre laser,” Appl. Surf. Sci. 248, 499–502 (2005). [CrossRef]
  29. M. Sabaeian, H. Nadgaran, M. De Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31, 1300–1305 (2009). [CrossRef]
  30. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited