OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: 105–109

Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots

Lin Dong, Abhilash Sugunan, Jun Hu, Sicheng Zhou, Shanghua Li, Sergei Popov, Muhammet S. Toprak, Ari T. Friberg, and Mamoun Muhammed  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. 105-109 (2013)
http://dx.doi.org/10.1364/AO.52.000105


View Full Text Article

Enhanced HTML    Acrobat PDF (665 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spherical CdSe-CdS core-shell quantum dots (QDs) are found to be flexible in the transition between the type-I regime and the type-II regime with different core/shell dimensions. The quasi-type-II feature of the colloidal dots is confirmed with time-resolved photoluminescence (PL) measurements. Two recombination paths of the excitons with significantly different decay rates are observed and analyzed. The spherical CdSe-CdS core-shell QDs are numerically simulated to investigate the carrier separation. A relatively long radiative lifetime and high degree of spatial carrier separation provide good potential to achieve lasing under continuous-wave excitation. Amplified spontaneous emission at room temperature is detected from the QDs embedded in the polymer matrix. It is shown that a larger shell thickness results in a lower pumping threshold, while a smaller shell thickness leads to higher PL efficiency.

© 2012 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.3380) Materials : Laser materials
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Materials

History
Original Manuscript: October 4, 2012
Revised Manuscript: November 29, 2012
Manuscript Accepted: November 30, 2012
Published: December 21, 2012

Citation
Lin Dong, Abhilash Sugunan, Jun Hu, Sicheng Zhou, Shanghua Li, Sergei Popov, Muhammet S. Toprak, Ari T. Friberg, and Mamoun Muhammed, "Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots," Appl. Opt. 52, 105-109 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-105


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447, 441–446 (2007). [CrossRef]
  2. S. Popov, “Dye photodestruction in a solid-state dye laser with polymeric gain medium,” Appl. Opt. 37, 6449–6455 (1998). [CrossRef]
  3. F. J. Duarte and R. O. James, “Tunable solid-state lasers incorporating dye-doped polymer-nanoparticle gain media,” Opt. Lett. 28, 2088–2090 (2003). [CrossRef]
  4. N. N. Ledentsov, G. M. Guryanov, G. E. Tsyrlin, V. N. Petrov, Y. B. Samsonenko, A. O. Golubok, and S. Y. Tipisev, “Effect of heat-treatment conditions on the surface morphology of gallium arsenide grown on vicinal GaAs (100) substrates by molecular-beam epitaxy,” Semiconductors 28, 526–527(1994).
  5. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000). [CrossRef]
  6. J. Butty, Y. Z. Hu, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, “Quasicontinuous gain in sol-gel derived CdS quantum dots,” Appl. Phys. Lett. 67, 2672–2674 (1995). [CrossRef]
  7. H. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. I. Klimov, “Color-selective semiconductor nanocrystal laser, ” Appl. Phys. Lett. 80, 4614–4616 (2002). [CrossRef]
  8. A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81, 1303–1305 (2002). [CrossRef]
  9. A. H. Nethercot, “Prediction of Fermi energies and photoelectric thresholds based on electronegativity concepts,” Phys. Rev. Lett. 33, 1088–1091 (1974). [CrossRef]
  10. C. Trager-Cowan, P. J. Parbrook, B. Henderson, and K. P. O’Donnell, “Band alignments in Zn(Cd)S(Se) strained layer superlattices,” Semicond. Sci. Technol. 7, 536–541 (1992). [CrossRef]
  11. K. P. O’Donnell, P. J. Parbrook, F. Yang, X. Chen, D. J. Irvine, C. Trager-Cowan, B. Henderson, P. J. Wright, and B. Cockayne, “The optical properties of wide bandgap binary II–VI superlattices,” J. Cryst. Growth 117, 497–500 (1992). [CrossRef]
  12. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119, 7019–7029 (1997). [CrossRef]
  13. L. Dong, S. Zhou, S. Popov, and A. T. Friberg, “Radiative properties of carriers in CdSe-CdS core-shell heterostructured nanocrystals of various geometries,” J. Europ. Opt. Soc. Rap. Public. (to be published).
  14. S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and Victor I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004). [CrossRef]
  15. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003). [CrossRef]
  16. A. Sugunan, Y. Zhao, S. Mitra, L. Dong, S. Li, S. Popov, S. Marcinkevicius, M. S. Toprak, and M. Muhammed, “Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots,” Nanotechnology 22, 425202 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited