OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: 20–29

Fourier fringe analysis and its application to metrology of extreme physical phenomena: a review [Invited]

Mitsuo Takeda  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. 20-29 (2013)
http://dx.doi.org/10.1364/AO.52.000020


View Full Text Article

Enhanced HTML    Acrobat PDF (1622 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The paper reviews a technique for fringe analysis referred to as Fourier fringe analysis (FFA) or the Fourier transform method, with a particular focus on its application to metrology of extreme physical phenomena. Examples include the measurement of extremely small magnetic fields with subfluxon sensitivity by electron wave interferometry, subnanometer wavefront evaluation of projection optics for extreme UV lithography, the detection of sub-Ångstrom distortion of a crystal lattice, and the measurement of ultrashort optical pulses in the femotsecond to attosecond range, which show how the advantages of FFA are exploited in these cutting edge applications.

© 2012 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

History
Original Manuscript: August 27, 2012
Manuscript Accepted: September 14, 2012
Published: December 21, 2012

Virtual Issues
(2013) Advances in Optics and Photonics

Citation
Mitsuo Takeda, "Fourier fringe analysis and its application to metrology of extreme physical phenomena: a review [Invited]," Appl. Opt. 52, 20-29 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-20


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. Robinson, G. T. Reid, eds., Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (Institute of Physics, 1993).
  2. D. Malacara, M. Servín, Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).
  3. K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1988). [CrossRef]
  4. J. Schwider, “Advanced evaluation techniques in interferometry,” Prog. Opt. 28, 271–359 (1990). [CrossRef]
  5. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  6. M. Takeda, K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983). [CrossRef]
  7. M. Takeda, “Spatial-carrier fringe pattern analysis and its applications to precision interferometry and profilometry: an overview,” Ind. Metrol. 1, 79–99 (1990). [CrossRef]
  8. X. Su, W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35, 263–284 (2001). [CrossRef]
  9. M. Takeda, “Measurement of extreme physical phenomena by Fourier fringe analysis: a review,” Proc. SPIE 8011, 80116S (2011). [CrossRef]
  10. T. R. Judge, P. J. Bryanston-Cross, “A review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng. 21, 199–239 (1994). [CrossRef]
  11. M. Takeda, “Recent progress in phase unwrapping techniques,” Proc. SPIE 2782, 334–343 (1996). [CrossRef]
  12. X. Su, W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng. 42, 245–261 (2004). [CrossRef]
  13. D. J. Bone, H.-A. Bachor, J. Sandeman, “Fringe-pattern analysis using a 2-D Fourier transform,” Appl. Opt. 25, 1653–1660 (1986). [CrossRef]
  14. M. Takeda, M. Kitoh, “Spatiotemporal frequency multiplex heterodyne interferometry,” J. Opt. Soc. Am. A 9, 1607–1613 (1992). [CrossRef]
  15. J. H. Bruning, D. R. Herriott, J. E. Gallaghar, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef]
  16. K. H. Womack, “Interferometric phase measurement using spatial synchronous detection,” Opt. Eng. 23, 391–395 (1984).
  17. L. Mertz, “Real-time fringe-pattern analysis,” Appl. Opt. 22, 1535–1539 (1983). [CrossRef]
  18. Y. Ichioka, M. Inuiya, “Direct phase detecting system,” Appl. Opt. 11, 1507–1514 (1972). [CrossRef]
  19. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44, 6861–6868 (2005). [CrossRef]
  20. M. Kujawinska, A. Spik, J. Wojciak, “Fringe pattern analysis using Fourier transform techniques,” Proc. SPIE 1121, 130–135 (1989). [CrossRef]
  21. C. Roddier, F. Roddier, “Interferogram analysis using Fourier transform techniques,” Appl. Opt. 26, 1668–1673 (1987). [CrossRef]
  22. Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementation,” Opt. Lasers Eng. 45, 304–317 (2007). [CrossRef]
  23. K. Freischlad, C. L. Koliopoulos, “Fourier description of digital phase-measuring interferometry,” J. Opt. Soc. Am. A 7, 542–551 (1990). [CrossRef]
  24. K. G. Larkin, B. F. Oreb, “Design and assessment of symmetrical phase-shifting algorithms,” J. Opt. Soc. Am. A 9, 1740–1748 (1992). [CrossRef]
  25. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35, 51–60 (1996). [CrossRef]
  26. X. Su, Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Lasers Eng. 48, 191–204 (2010). [CrossRef]
  27. S. Petitgrand, R. Yahiaoui, K. Danaie, A. Bosseboeuf, J. P. Gilles, “3D measurement of micro-mechanical devices vibration mode shapes with a stroboscopic interferometric microscope,” Opt. Lasers Eng. 36, 77–101 (2001). [CrossRef]
  28. P. Gren, “Bending wave propagation in rotating objects measured by pulsed TV holography,” Appl. Opt. 41, 7237–7240 (2002). [CrossRef]
  29. M. B. Whitworth, J. M. Huntley, “Dynamic stress analysis by high-resolution reflection moiré photography,” Opt. Eng. 33, 924–931 (1994). [CrossRef]
  30. J. B. Liu, P. D. Ronney, “Modified Fourier transform method for interferogram fringe pattern analysis,” Appl. Opt. 36, 6231–6241 (1997). [CrossRef]
  31. R. Snyder, L. Hesselink, “Measurement of mixing fluid flows with optical tomography,” Opt. Lett. 13, 87–89 (1988). [CrossRef]
  32. T. Fricke-Begemann, J. Burke, “Speckle interferometry: three-dimensional deformation field measurement with a single interferogram,” Appl. Opt. 40, 5011–5022 (2001). [CrossRef]
  33. C. Quan, P. J. Bryanston-Cross, T. R. Judge, “Photoelasticity stress analysis using carrier fringe and FFT techniques,” Opt. Lasers Eng. 18, 79–108 (1993). [CrossRef]
  34. C. Karaalioglu, Y. Skarlatos, “Fourier transform method for measurement of thin film thickness by speckle interferometer,” Opt. Eng. 42, 1694–1698 (2003). [CrossRef]
  35. B. Doerband, H. J. Tiziani, “Testing aspheric surfaces with computer-generated holograms: analysis of adjustment and shape errors, Appl. Opt. 24, 2604–2611 (1985). [CrossRef]
  36. M. Borghesi, A. Giulietti, D. Giulietti, L. A. Gizzi, A. Macchi, O. Willi, “Characterization of laser plasmas for interaction studies: progress in time-resolved density mapping,” Phys. Rev. E 54, 6769–6773 (1996). [CrossRef]
  37. M. Kalal, B. Luther-Davies, K. A. Nugent, “Phase-amplitude imaging: the fully automated analysis of mega-gauss magnetic field measurements in laser-produced plasmas,” J. Appl. Phys. 64, 3845–3850 (1988). [CrossRef]
  38. C. Chang, P. Naulleau, E. Anderson, D. Attwood, “Spatial coherence characterization of undulator radiation,” Opt. Commun. 182, 25–34 (2000). [CrossRef]
  39. C. Chang, E. Anderson, P. Naulleau, E. Gullikson, K. Goldberg, D. Attwood, “Direct measurement of index of refraction in the extreme-ultraviolet wavelength region with a novel interferometer,” Opt. Lett. 27, 1028–1030 (2002). [CrossRef]
  40. Y. Ohtsuka, K. Oka, “Contour mapping of the spatiotemporal state of polarization of light,” Appl. Opt. 33, 2633–2636 (1994). [CrossRef]
  41. S. Drobczynski, H. Kasprzak, “Application of space periodic variation of light polarization in imaging polarimetry,” Appl. Opt. 44, 3160–3166 (2005). [CrossRef]
  42. D. N. Naik, R. K. Singh, H. Itou, M. M. Brundavanam, Y. Miyamoto, M. Takeda, “Single-shot full-field interferometric polarimeter with an integrated calibration scheme,” Opt. Lett. 37, 3282–3284 (2012).
  43. K. Oka, T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24, 1475–1477 (1999). [CrossRef]
  44. W. Wang, S. G. Hanson, Y. Miyamoto, M. Takeda, “Experimental investigation of local properties and statistics of optical vortices in random wave fields,” Phys. Rev. Lett. 94, 103902 (2005). [CrossRef]
  45. W. Wang, Z. Duan, S. G. Hanson, Y. Miyamoto, M. Takeda, “Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function,” Phys. Rev. Lett. 96, 073902 (2006). [CrossRef]
  46. D. Charraut, C. Bainier, D. Courjon, C. Girard, “Near-field phase measurement by Fourier analysis of the fringe pattern,” Pure Appl. Opt. 6, 491–502 (1997). [CrossRef]
  47. A. Momose, W. Yashiro, H. Maikusa, Y. Takeda, “High-speed X-ray phase imaging and X-ray phase tomography with Talbot interferometer and white synchrotron radiation,” Opt. Express 17, 12540–12545 (2009). [CrossRef]
  48. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morisawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652–10664 (2005). [CrossRef]
  49. A. Dubra, C. Paterson, C. Dainty, “Study of the tear topography dynamics using a lateral shearing interferometer,” Opt. Express 12, 6278–6288 (2004). [CrossRef]
  50. S. Schedin, G. Pedrini, H. J. Tiziani, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt. 39, 2853–2857 (2000). [CrossRef]
  51. A. Tonomura, Electron Holography (Springer, 1999).
  52. A. Tonomura, “Applications of electron holography,” Rev. Mod. Phys. 59, 639–669 (1987). [CrossRef]
  53. N. Osakabe, K. Yoshida, Y. Horiuchi, T. Matsuda, H. Tanabe, T. Okuwaki, J. Endo, H. Fujiwara, A. Tonomura, “Observation of recorded magnetization pattern by electron holography,” Appl. Phys. Lett. 42, 746–748 (1983). [CrossRef]
  54. Y. Aharonov, D. Bohm, “Significance of electromagnetic potentials in quantum theory,” Phys. Rev. 115, 485–491 (1959). [CrossRef]
  55. M. Takeda, Q. S. Ru, “Computer-based highly sensitive electron-wave interferometry,” Appl. Opt. 24, 3068–3071 (1985). [CrossRef]
  56. O. Bryngdahl, A. W. Lohmann, “Interferograms are image holograms,” J. Opt. Soc. Am. 58, 141–142 (1968). [CrossRef]
  57. M. Takeda, S. Kobayashi, “Lateral aberration measurements with a digital Talbot interferometer,” Appl. Opt. 23, 1760–1764 (1984). [CrossRef]
  58. P. P. Naulleau, K. A. Goldberg, J. Bokor, “Extreme ultraviolet carrier-frequency shearing interferometry of a lithographic four-mirror optical system,” J. Vac. Sci. Technol. B 18, 2939–2943 (2000). [CrossRef]
  59. C. Ouchi, S. Kato, M. Hasegawa, T. Hasegawa, H. Yokota, K. Sugisaki, M. Okada, K. Murakami, J. Saito, M. Niibe, M. Takeda, “EUV wavefront metrology at EUVA,” Proc. SPIE 6152, 61522O (2006). [CrossRef]
  60. K. Sugisaki, M. Hasegawa, M. Okada, Y. Zhu, K. Otaki, Z. Liu, M. Ishii, J. Kawakami, K. Murakami, J. Saito, S. Kato, C. Ouchi, A. Ohkubo, Y. Sekine, T. Hasegawa, A. Suzuki, M. Niibe, M. Takeda, “EUVA’s challenges toward 0.1 nm accuracy in EUV at-wavelength interferometry,” in Fringe 2005, the 5th International Workshop on Automatic Processing of Fringe Patterns, W. Osten, ed. (Springer, 2005), pp. 252–266.
  61. C. Iaconis, I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998). [CrossRef]
  62. C. Iaconis, I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999). [CrossRef]
  63. M. Takeda, J. Suzuki, “Sub-ångstrom measurement of crystal lattice distortions by Fourier fringe analysis,” in Frontiers in Information Optics, Topical Meeting of ICO 1994, Technical Digest (Japan Society of Applied Physics, 1994), p. 105.
  64. M. Takeda, J. Suzuki, “Crystallographic heterodyne phase detection technique for highly-sensitive lattice-distortion measurements,” in Signal Recovery and Synthesis, Vol 11 of Technical Digest Series (Optical Society of America, 1995), pp. 23–25.
  65. M. Takeda, J. Suzuki, “Crystallographic heterodyne phase detection for highly sensitive lattice-distortion measurements,” J. Opt. Soc. Am. A 13, 1495–1500 (1996). [CrossRef]
  66. M. J. Hÿtch, M. Gandais, “Quantitative criteria for the detection and characterization of nanocrystals from high-resolution electron microscopy images,” Philos. Mag. A 72, 619–634 (1995). [CrossRef]
  67. M. J. Hÿtch, J.-L. Putaux, J.-M. Pénisson, “Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy,” Nature 423, 270–273 (2003). [CrossRef]
  68. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, I. A. Walmsley, “Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction,” Opt. Lett. 24, 1314–1316 (1999). [CrossRef]
  69. D. R. Austin, T. Witting, I. A. Walmsley, “High precision self-referenced phase retrieval of complex pulses with multiple-shearing spectral interferometry,” J. Opt. Soc. Am. B 26, 1818–1830 (2009). [CrossRef]
  70. G. Sansone, E. Benedetti, J.-P. Caumes, S. Stagira, C. Vozzi, M. Pascolini, L. Poletto, P. Villoresi, S. De Silvestri, M. Nisoli, “Measurement of harmonic phase differences by interference of attosecond light pulses,” Phys. Rev. Lett. 94, 193903 (2005). [CrossRef]
  71. T. Rementter, P. Johnsson, J. Mauritsson, K. Varju, Y. Ni, F. L’epine, E. Gustafsson, M. Kling, J. Khan, R. Lo’pez-Martens, K. J. Schafer, M. J. J. Vrakking, A. L’huillier, “Attosecond electron wave packet interferometry,” Nat. Phys. 2, 323–326 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited