OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: 30–44

From speckle pattern photography to digital holographic interferometry [Invited]

Hans J. Tiziani and Giancarlo Pedrini  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. 30-44 (2013)
http://dx.doi.org/10.1364/AO.52.000030


View Full Text Article

Enhanced HTML    Acrobat PDF (1819 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Speckles are inherently an interference phenomenon produced when an optically rough surface or a turbulent medium introduces some degree of randomness to a reflected or a transmitted electromagnetic field. Speckles are often nuisance in coherent image formation. Speckle patterns are however a useful tool for displacement and deformation as well as vibration and stress analysis. The development of speckle photography to speckle interferometry and digital holographic interferometry is described in this paper.

© 2012 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(090.1995) Holography : Digital holography

History
Original Manuscript: August 23, 2012
Manuscript Accepted: September 21, 2012
Published: December 21, 2012

Virtual Issues
(2013) Advances in Optics and Photonics

Citation
Hans J. Tiziani and Giancarlo Pedrini, "From speckle pattern photography to digital holographic interferometry [Invited]," Appl. Opt. 52, 30-44 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-30


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. S. McKechnie, “Speckle reduction,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., 2nd ed. (Springer Verlag, 1984), Chap. 4.
  2. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), Chap. 2, pp. 9–75.
  3. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).
  4. J. C. Dainty, “Introduction,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., 2nd ed. (Springer-Verlag, 1984).
  5. J. E. Ward, D. P. Kelly, and J. T. Sheridan, “Three-dimensional speckle size in generalized optical systems with limiting apertures,” J. Opt. Soc. Am. A. 26, 1855–1864 (2009). [CrossRef]
  6. E. Archbold, J. M. Burch, and A. E. Ennos, “Recording of in-plane surface displacement by double-exposure speckle photography,” Opt. Acta 17, 883–898 (1970). [CrossRef]
  7. H. J. Tiziani, “Vibration analysis and deformation measurement,” in Speckle Metrology (Academic, 1978), pp. 73–110.
  8. H. J. Tiziani, “Analysis of mechanical oscillation by speckling,” Appl. Opt. 11, 2911–2917 (1972). [CrossRef]
  9. H. J. Tiziani, “A study of the use of laser speckle to measure small tilts of optical rough surfaces accurately,” Opt. Commun. 5, 271–276 (1972). [CrossRef]
  10. I. Yamaguchi, “Theory and application of speckle displacement,” in Speckle Metrology, R. S. Sirohi, ed. (Dekker, 1993).
  11. K. A. Stetson, “A review of speckle photography and speckle interferometry,” Opt. Eng. 14, 482–489 (1975).
  12. H. J. Tiziani, “Real-time metrology with BSO crystals,” Opt. Acta 29, 463–470 (1982). [CrossRef]
  13. H. J. Tiziani, K. Leonhardt, and J. Klenk, “Real-time displacement and tilt analysis by a speckle technique using Bi12SiO20 crystals,” Opt. Commun. 34, 327–331 (1980). [CrossRef]
  14. H. J. Tiziani and J. Klenk, “Vibration analysis by speckle techniques in real time,” Appl. Opt. 20, 1467–1470 (1981). [CrossRef]
  15. R. S. Krishna, K. Mohan, and R. S. Sirohi, “Real-time speckle photography with two wave mixing in photo refractive BaTiO3 crystals,” Opt. Eng. 33, 1989–1995 (1994). [CrossRef]
  16. E. Okada, H. Enomoto, and H. Miniamitani, “Speckle methodology with liquid crystal television and position sensitive device,” in Proceedings of 20th International Conference on Industrial Electronics, Control, and Instrumentation, 1994 (IEEE, 1994), Vol. 2, pp. 890–893.
  17. W. H. Peters and W. F. Ranson, “Digital imaging technique in experimental stress analysis,” Opt. Eng. 21, 213427 (1982).
  18. M. Sjödahl, “Accuracy in electronic speckle photography,” Appl. Opt. 36, 2875–2885 (1997). [CrossRef]
  19. J. N. Butters, R. C. Jones, and C. Wykes, “Electronic speckle pattern interferometry,” in Speckle Metrology, R. K. Erf, ed. (Springer-Verlag, 1975), pp. 111–157.
  20. Y. Y. Hung, “Displacement and strain measurement,” in Speckle Metrology, R. K. Erf, ed. (Springer-Verlag, 1975), pp. 51–71.
  21. R. Jones and C. Wykes, Holographic and Speckle Interferometry, 2nd ed. (Cambridge University, 1989).
  22. A. E. Ennos, “Speckle interferometry,” Prog. Opt. 16, 233–288 (1978). [CrossRef]
  23. J. N. Butters and J. A. Leendertz, “A double-exposure technique for speckle pattern interferometry,” J. Phys. E 4, 277–279 (1971). [CrossRef]
  24. O. J. Lokberg, “Recent developments in video speckle interferometry,” in Speckle Metrology, R. S. Sirohi, ed. (Dekker, 1993), pp. 157–194.
  25. O. J. Lokberg, “ESPI—the ultimate holographic tool for vibration analysis,” J. Acoust. Soc. Am. 75, 1783–1791 (1984). [CrossRef]
  26. J. C. Davies, and C. H. Buckberry, “Television holography and its applications,” in Optical Methods in Engineering Metrology, D. C. Williams, ed. (Chapman and Hall, 1993), pp. 275–338.
  27. C. Joenathan and H. J. Tiziani, “Speckle and speckle metrology,” in The Optics Encyclopedia: Basic Foundation and Practical Applications (Wiley, 2004), Vol. 4.
  28. P. Meinschmidt, K. D. Hinsch, and R. S. Sirohi, Selected Papers on Speckle Pattern Interferometry—Principles and Practice, SPIE Milestone series, MS 132 (SPIE, 1996).
  29. R. Rodriguez-Vera, D. Kerr, and F. M. Mendoza-Santoyo, “Electronic speckle contouring,” J. Opt. Soc. Am. A 9, 2000–2008 (1992). [CrossRef]
  30. Y. Zou, H. Diao, X. Peng, and H. J. Tiziani, “Contouring by electronic speckle pattern interferometry with quadruple-beam illumination,” Appl. Opt. 31, 6599–6602 (1992). [CrossRef]
  31. Y. Zou, H. Diao, X. Peng, and H. J. Tiziani, “Geometry for contouring by electronic speckle pattern interferometry based on shifting illumination beams,” Appl. Opt. 31, 6616–6621 (1992). [CrossRef]
  32. C. Joenathan, H. J. Tiziani, and P. Pfister, “Contouring by electronic speckle pattern interferometry employing dual beam illumination,” Appl. Opt. 29, 1905–1911 (1990). [CrossRef]
  33. Y. Zou, G. Pedrini, and H. J. Tiziani, “Contouring by electronic speckle pattern interferometry employing divergent dual beam illumination,” J. Mod. Opt. 41, 1637–1652 (1994). [CrossRef]
  34. M. Takeda, I. Hideki, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72, 156–160 (1982). [CrossRef]
  35. D. W. Robinson and G. T. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (IOP, 1993).
  36. K. Creath, “Phase shifting speckle interferometry,” Appl. Opt. 24, 3053–3058 (1985). [CrossRef]
  37. D. Kerr, F. M. Santoyo, and J. R. Tyrer, “Extraction of phase data from electronic speckle pattern interferometric fringes using a single-phase-step method: a novel approach,” J. Opt. Soc. Am. 7, 820–826 (1990). [CrossRef]
  38. C. Joenathan, H. J. Tiziani, and B. Franze, “Oblique incidence and observation electronic speckle pattern interferometry,” Appl. Opt. 33, 7305–7311 (1994). [CrossRef]
  39. T. Bothe, J. Burke, and H. Helmers, “Spatial phase-shifting in electronic speckle pattern interferometry: minimization of phase reconstruction errors,” Appl. Opt. 36, 5310–5316 (1997). [CrossRef]
  40. G. Pedrini, B. Pfister, and H. J. Tiziani, “Double pulsed electronic speckle interferometry,” J. Mod. Opt. 40, 89–96 (1993). [CrossRef]
  41. G. Pedrini and H. J. Tiziani,” Double-pulse electronic speckle interferometry for vibration analysis,” Appl. Opt. 33, 7857–7863 (1994). [CrossRef]
  42. J. M. Huntley and J. Saldner, “Temporal phase un-wrapping for automated interferogram analysis,” Appl. Opt. 32, 3047–3052 (1993). [CrossRef]
  43. A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones, “Transient deformation measurement with electronic speckle pattern interferometry and a high speed camera,” Appl. Opt. 38, 1159–1162 (1999). [CrossRef]
  44. J. M. Huntley and H. Saldner, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36, 610–615 (1997). [CrossRef]
  45. C. Joenathan, B. Franze, P. Haible, and H. J. Tiziani, “Speckle interferometry with temporal phase evaluation for measuring large object deformation,” Appl. Opt. 37, 2608–2614 (1998). [CrossRef]
  46. C. Joenathan, B. Franze, P. Haible, and H. J. Tiziani, “Shape measurement by use of temporal Fourier transform in dual-beam illumination speckle interferometry,” Appl. Opt. 37, 3385–3390 (1998). [CrossRef]
  47. C. Joenathan, B. Franze, P. Haible, and H. J. Tiziani, “Speckle interferometry with temporal phase evaluation: effect of speckle size, decorrelation and nonlinearity of the camera,” Appl. Opt. 38, 1169–1178 (1999). [CrossRef]
  48. H. J. Tiziani, “Progress in temporal speckle modulation,” Optik 112, 370–380 (2001). [CrossRef]
  49. C. Joenathan, B. Franze, P. Haible, and H. J. Tiziani, “Novel temporal Fourier transform speckle pattern shearing interferometer,” Opt. Eng. 37, 1790–1795 (1998). [CrossRef]
  50. J. Kaufmann and H. J. Tiziani, “Time resolved vibration measurement with temporal speckle pattern interferometry,” Appl. Opt. 45, 6682–6688 (2006). [CrossRef]
  51. D. V. Madjarova, H. Kadono, and S. Toyooka, “Dynamic electronic speckle pattern interferometry (DESPI) phase analyses with temporal Hilbert transform,” Opt. Express 11, 617–623 (2003). [CrossRef]
  52. D. Gabor, “Reconstruction of phase objects by holography,” Nature 161, 777–778 (1948). [CrossRef]
  53. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three dimensional objects,” J. Opt. Soc. Am. 54, 1295–1301 (1964). [CrossRef]
  54. C. M. Vest, Holographic Interferometry (Wiley, 1979).
  55. Th. Kreis, Holographic Interferometry, Principles and Methods (Akademie Verlag, 1996).
  56. R. L. Powel and K. A. Stetson, “Interferometric vibration analysis by wavefront reconstruction,” J. Opt. Soc. Am. 55, 1593–1598 (1965). [CrossRef]
  57. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). [CrossRef]
  58. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31, 4973–4978 (1992). [CrossRef]
  59. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994). [CrossRef]
  60. U. Schnars and W. Jüptner, “Digital recording and reconstruction of holograms in hologram interferometry and shearography,” Appl. Opt. 33, 4373–4377 (1994). [CrossRef]
  61. G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Digital double pulse-holographic interferometry for vibration analysis,” J. Mod. Opt. 42, 367–374 (1995). [CrossRef]
  62. G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997). [CrossRef]
  63. G. Pedrini, Y. Zou, and H. J. Tiziani, “Simultaneous quantitative evaluation of in-plane and out-of-plane deformations using multi directional spatial carrier,” Appl. Opt. 36, 786–792 (1997). [CrossRef]
  64. G. Pedrini, Ph. Froening, H. Fessler, and H. J. Tiziani, “In-line digital holographic interferometry,” Appl. Opt. 37, 6262–6269 (1998). [CrossRef]
  65. G. Pedrini and H. J. Tiziani, “Quantitative evaluation of two-dimensional dynamic deformations using digital holography,” Opt. Laser Technol. 29, 249–256 (1997). [CrossRef]
  66. G. Pedrini, Ph. Fröning, H. J. Tiziani, and M. E. Gusev, “Pulsed digital holography for high-speed contouring that uses the two-wavelength method,” Appl. Opt. 38, 3460–3467(1999). [CrossRef]
  67. S. Schedin, G. Pedrini, H. J. Tiziani, A. K. Aggarwal, and M. E. Gusev, “Highly sensitive pulsed digital holography for built-in defect analysis with a laser excitation,” Appl. Opt. 40, 100–103 (2001). [CrossRef]
  68. C. Perez-Lopez, F. Mendoza Santoyo, G. Pedrini, S. Schedin, and H. J. Tiziani, “Pulsed digital holographic interferometry for dynamic measurement of rotating objects with an optical derotator,” Appl. Opt. 40, 5106–5110 (2001). [CrossRef]
  69. G. Pedrini, I. Alexeenko, W. Osten, and H. J. Tiziani, “Temporal phase unwrapping of digital hologram sequences,” Appl. Opt. 42, 5846–5854 (2003). [CrossRef]
  70. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45, 3456–3462 (2006). [CrossRef]
  71. J. A. Leendertz and J. N. Butters, “An image-shearing speckle pattern interferometer for measuring bending moments,” J. Phys. E 6, 1107–1110 (1973). [CrossRef]
  72. Y. Y. Hung and C. Y. Liang, “Image-shearing camera for direct measurement of surface strains,” Appl. Opt. 18, 1046–1051 (1979). [CrossRef]
  73. P. K. Rastogi, ed., special issue on “Speckle and speckle shearing interferometry,” Opt. Lasers Eng. 26, 83–278 (1997). [CrossRef]
  74. W. Steinchen and L. X. Yang, Digital Shearography: Theory and Applications of Digital Speckle Pattern Shearing Interferometry (SPIE, 2003).
  75. C. Joenathan, C. S. Narayanmurthy, and R. S. Sirohi, “Radial and rotational slope contours in speckle shear interferometry,” Opt. Commun. 56, 309–312 (1986). [CrossRef]
  76. G. Pedrini, Y. Zou, and H. J. Tiziani, “Quantitative evaluation of digital shearing interferograms using the spatial carrier method,” Pure Appl. Opt. 5, 313–321 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited