OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: 61–72

Pattern-integrated interference [Invited]

Thomas K. Gaylord, Matthieu C. R. Leibovici, and Guy M. Burrow  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. 61-72 (2013)
http://dx.doi.org/10.1364/AO.52.000061


View Full Text Article

Enhanced HTML    Acrobat PDF (1476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Pattern-integrated interference (PII) is described as a logical progression starting from the primary precursors of interference and holography. PII produces, in a single-exposure step, a periodic interference pattern with preselected periods absent. These blocked periods, for example, can form the nonperiodic functional elements of a photonic-crystal device or the circuit elements in a periodic-layout-design semiconductor chip. Various possible system configurations for PII are presented and compared. Example PII-produced intensity patterns for a photonic-crystal microresonator filter and an optical switch are simulated and discussed.

© 2012 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(260.3160) Physical optics : Interference
(070.2615) Fourier optics and signal processing : Frequency filtering
(110.4235) Imaging systems : Nanolithography
(050.5298) Diffraction and gratings : Photonic crystals

History
Original Manuscript: September 5, 2012
Manuscript Accepted: November 13, 2012
Published: December 21, 2012

Virtual Issues
(2013) Advances in Optics and Photonics

Citation
Thomas K. Gaylord, Matthieu C. R. Leibovici, and Guy M. Burrow, "Pattern-integrated interference [Invited]," Appl. Opt. 52, 61-72 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-61


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts (Printed for J. Johnson, 1807).
  2. W. Mao, Y. Zhong, J. Dong, and H. Wang, “Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams,” J. Opt. Soc. Am. B 22, 1085–1091(2005). [CrossRef]
  3. L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002). [CrossRef]
  4. M. Maldovan and E. L. Thomas, Periodic Materials and Interference Lithography (Wiley-VCH, 2009).
  5. J. L. Stay and T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47, 3221–3230 (2008). [CrossRef]
  6. J. L. Stay and T. K. Gaylord, “Contrast in four-beam-interference lithography,” Opt. Lett. 33, 1434–1436 (2008). [CrossRef]
  7. J. L. Stay and T. K. Gaylord, “Conditions for primitive-lattice-vector-direction equal contrasts in four-beam-interference lithography,” Appl. Opt. 48, 4801–4813 (2009). [CrossRef]
  8. G. M. Burrow, “Pattern-integrated interference lithography: single-exposure formation of photonic crystal lattices with integrated functional elements,” Ph.D. thesis (Georgia Institute of Technology, 2012).
  9. G. M. Burrow and T. K. Gaylord, “Parametric constraints in multi-beam interference,” J. Microlithogr. Microfabr. Microsyst. 11, 043004 (2012). [CrossRef]
  10. G. M. Burrow and T. K. Gaylord, “Multi-beam interference advances and applications: nanoelectronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures,” Micromachines 2, 221–257 (2011). [CrossRef]
  11. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef]
  12. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962). [CrossRef]
  13. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295–1301 (1964). [CrossRef]
  14. R. B. Millington, A. G. Mayes, J. Blyth, and C. R. Lowe, “A hologram biosensor for proteases,” Sens. Actuators B 33, 55–59 (1996). [CrossRef]
  15. J. Wallace, “Optical data storage: 500 GByte volume-holographic disc can be written at Blu-ray speed,” Laser Focus World 47, 13–14 (2011).
  16. G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012). [CrossRef]
  17. G. M. Burrow and T. K. Gaylord, “Interference projection exposure system and method of using the same,” U.S. patent application 2012/0081687 (30September2010).
  18. M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano and microelectronics,” Opt. Express 20, 23643–23652 (2012). [CrossRef]
  19. L. Liebmann, G. Northrop, J. Culp, L. Sigal, A. Barish, and C. Fonseca, “Layout optimization at the pinnacle of optical lithography,” Proc. SPIE 5042, 1–14 (2003). [CrossRef]
  20. S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography—from periodic arrays to arbitrary patterns,” Microelectron. Eng. 41–42, 145–148 (1998). [CrossRef]
  21. X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: a wavelength division multiplex approach to extending optical lithography,” J. Vac. Sci. Technol. B 16, 3392–3397 (1998). [CrossRef]
  22. X. Chen and S. R. J. Brueck, “Imaging interferometric lithography for arbitrary patterns,” Proc. SPIE 3331, 214–224 (1998). [CrossRef]
  23. X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: approaching the resolution limits of optics,” Opt. Lett. 24, 124–126 (1999). [CrossRef]
  24. A. Frauenglass, S. Smolev, A. Biswas, and S. R. J. Brueck, “244 nm imaging interferometric lithography,” J. Vac. Sci. Technol. B 22, 3465–3469 (2004). [CrossRef]
  25. S. R. J. Brueck, “Optical and interferometric lithography—nanotechnology enablers,” Proc. IEEE 93, 1704–1721 (2005). [CrossRef]
  26. X. Chen, A. Frauenglass, and S. R. J. Brueck, “Interferometric lithography pattern delimited by a mask image,” Proc. SPIE 3331, 496–502 (1998). [CrossRef]
  27. J. T. Li, Y. K. Liu, X. S. Xie, P. Q. Zhang, B. Liang, L. Yan, J. Y. Zhou, G. Kurizki, D. Jacobs, K. S. Wong, and Y. C. Zhong, “Fabrication of photonic crystals with functional defects by one-step holographic lithography,” Opt. Express 16, 12899–12904 (2008). [CrossRef]
  28. P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113–116 (2011). [CrossRef]
  29. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991). [CrossRef]
  30. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995). [CrossRef]
  31. H.-S. Lee, Y.-H. Kim, D. Han, and B. Lee, “Cross-talk noise analysis in hologram memory with hybrid multiplexing of the Hadamard phase code and wavelength,” J. Opt. Soc. Am. A 16, 563–567 (1999). [CrossRef]
  32. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  33. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  34. N. H. Farhat, Advances in Holography (Dekker, 1976), Vol. 3.
  35. H. J. Caulfield, Handbook of Optical Holography (Academic, 1979).
  36. G. M. Burrow and T. K. Gaylord, “Diffractive photo-mask and methods of using and fabricating the same,” U.S. patent application 2012/0082943 (30September2010).
  37. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]
  38. S. Mookherjea, D. S. Cohen, and A. Yariv, “Nonlinear dispersion in a coupled-resonator optical waveguide,” Opt. Lett. 27, 933–935 (2002). [CrossRef]
  39. M. Soltani, A. Adibi, Y. Xu, and R. K. Lee, “Systematic design of single-mode coupled-resonator optical waveguides in photonic crystals,” Opt. Lett. 28, 1978–1980(2003). [CrossRef]
  40. K. Srinivasan, P. E. Barclay, and O. Painter, “Fabrication-tolerant high quality factor photonic crystal microcavities,” Opt. Express 12, 1458–1463 (2004). [CrossRef]
  41. P. E. Barclay, K. Srinivasan, and O. Fainter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005). [CrossRef]
  42. Y.-D. Wu, T.-T. Shih, and J.-J. Lee, “High-quality-factor filter based on a photonic crystal ring resonator for wavelength division multiplexing applications,” Appl. Opt. 48, F24–F30 (2009). [CrossRef]
  43. P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001). [CrossRef]
  44. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005). [CrossRef]
  45. D. P. Peng, P. Hu, V. Tolani, T. Dam, J. Tyminski, and S. Slonaker, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010). [CrossRef]
  46. M. C. R. Leibovici and T. K. Gaylord, Optics Laboratory, Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia 30332-0250, USA are preparing a manuscript to be called “Pattern-integrated interference lithography: vector modeling of the single-exposure fabrication of photonic-crystal structures.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited