OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: 73–81

Optical interference coatings for optics and photonics [Invited]

Cheng-Chung Lee  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. 73-81 (2013)
http://dx.doi.org/10.1364/AO.52.000073


View Full Text Article

Enhanced HTML    Acrobat PDF (541 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical interference coatings play as an important role in the progress in optics and photonics. In this article we give a minireview of the evolution of optical interference coatings from the theory, the design, to the manufacture. Some interesting but challenging topics for the future are also discussed.

© 2012 Optical Society of America

OCIS Codes
(310.0310) Thin films : Thin films
(310.1620) Thin films : Interference coatings

History
Original Manuscript: August 24, 2012
Manuscript Accepted: September 7, 2012
Published: December 21, 2012

Virtual Issues
(2013) Advances in Optics and Photonics

Citation
Cheng-Chung Lee, "Optical interference coatings for optics and photonics [Invited]," Appl. Opt. 52, 73-81 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-73


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Macleod, “Progress in optical coatings” [Invited], Proc. SPIE 7101, 710102 (2008). [CrossRef]
  2. H. A. Macleod, “Optical coating today,” presented at International Photonics Conference ’11, Plenary Talk, National Cheng Kung University, Taiwan, 8–10 December 2011.
  3. F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieus stratifiés. Applications aux couches minces. I,” Ann. Phys. 12(ième Serie 5), 596–640 (1950).
  4. F. Abelés, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieus stratifiés. Applications aux couches minces. II,” Ann. Phys.12(ième Serie 5), 706–784 (1950).
  5. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, 1986).
  6. C. C. Lee and C. W. Chu, “High power CO2 laser mirror: a design,” Appl. Opt. 26, 2544–2548 (1987) [CrossRef]
  7. G. Hass, “Mirror coatings,” in Applied Optics and Optical Engineering Volume III, R. Kingslake, ed. (Academic, 1965) 309–330.
  8. G. Hass, “Reflectance and preparation of front surface mirror for use at various angles of incidence from UV to far IR,” J. Opt. Soc. Am. 72, 27–39 (1982). [CrossRef]
  9. M. Boccas, “Coating Gemini’s mirrors with protected silver,” Gemini Newsletter 29, 9–13 (2004).
  10. C. Fabry and A. Perot, “Thèorie et applications d’une nouvelle mèthode de spectroscopie interfèrentielle,” Ann. Chim. Phys., Paris 16, 115–144 (1899).
  11. L. I. Epstein, “The design of optical filter,” J. Opt. Soc. Am. 42, 806–810 (1952). [CrossRef]
  12. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1988).
  13. E. Delano, “Fourier synthesis of multilayer filters,” J. Opt. Soc. Am. 57, 1529–1533 (1967). [CrossRef]
  14. J. A. Dobrowolski and D. Lowe, “Optical thin film synthesis program based on the use of Fourier transforms,” Appl. Opt. 17, 3039–3050 (1978). [CrossRef]
  15. B. G. Bovard, “Fourier transform technique applied to quarterwave optical coatings,” Appl. Opt. 27, 3062–3063 (1988). [CrossRef]
  16. H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin-film optical filters,” Opt. Acta 19, 1–28 (1972). [CrossRef]
  17. P. H. Berning and A. F. Turner, “Induced transmission in absorbing films applied to band pass filter design,” J. Opt. Soc. Am. 47, 230–239 (1957). [CrossRef]
  18. C. C. Lee, S. H. Chen, and C. C. Jaing, “Optical monitoring of silver based transparent heat mirror,” Appl. Opt. 35, 5698–5703 (1996). [CrossRef]
  19. H. A. Macleod, Thin-film Optical Filter, 4th ed. (CRC, 2010).
  20. D. Wei and A. Louderback, Method for fabricating multi-layer optical films, U.S. patent 4,142,958 (3March1979); U.S. patent Re 32,849 (31 January 1989); assignee: Litton Systems.
  21. P. J. Martin, H. A. Macleod, R. P. Netterfiled, C. G. Pacey, and W. G. Sainty, “Ion-beam-assisted deposition of thin film,” Appl. Opt. 22,178–184 (1983). [CrossRef]
  22. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667–675 (1995). [CrossRef]
  23. P. Bousquet, A. Fornier, R. Kowalczyk, E. Pwlletier, and P. Roche, “Optical filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972). [CrossRef]
  24. H. A. Macleod and E. Pelletier, “Error compensation mechanisms in some thin-film monitor systems,” Opt. Acta 24, 907–930 (1977). [CrossRef]
  25. B. Vidal, A. Fornier, and E. Pelletier, “Optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 17, 1038–1047 (1978). [CrossRef]
  26. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring,” Appl. Opt. 45, 7026–7034 (2006). [CrossRef]
  27. C. C. Lee and K. Wu, “In situ sensitive optical monitoring with proper error compensation,” Opt. Lett. 32, 2118–2120 (2007). [CrossRef]
  28. K. Wu, C. C. Lee, and T. L. Ni, “Broadband monitoring for thin film deposition through equivalent optical admittance loci observation,” Opt. Express 20, 3883–3889 (2012). [CrossRef]
  29. C. C. Lee, K. Wu, S. H. Chen, and S. R. Ma, “Optical monitoring and real time admittance loci calculation through polarization interferometer,” Opt. Express 15, 17536–17541 (2007). [CrossRef]
  30. K. Wu, C. C. Lee, N. J. Brock, and B. Kimbroug, “Multilayer thin film inspection through measurements of reflection coefficients,” Opt. Lett. 36, 3269–3271 (2011). [CrossRef]
  31. V. N. Yadava, S. K. Sharma, and K. L. Chopra, “Variable refractive index optical coatings,” Thin Solid Films 17, 243–252 (1973). [CrossRef]
  32. R. Jacobson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” Physics of Thin Films, Vol. 8 (Academic, 1975), pp. 51–98.
  33. J. S. Chen, S. Chao, J. S. Kao, H. Niu, and C. H. Chen, “Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation,” Appl. Opt. 35, 90–97 (1996). [CrossRef]
  34. Y. Tsou and F. C. Ho, “Optical properties of Hafnia and coevaporated Hafnia: magnesium fluoride thin films,” Appl. Opt. 35, 5091–5094 (1996). [CrossRef]
  35. C. C. Lee, C. J. Tang, and J. Y. Wu, “Rugate filter made with composite thin films by ion-beam sputtering,” Appl. Opt. 45, 1333–1337 (2006). [CrossRef]
  36. W. H. Southwell, “Coating design using very thin high-and low-index layers,” Appl. Opt. 24, 457–460 (1985). [CrossRef]
  37. S. I. Zaitsu, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002). [CrossRef]
  38. C. C. Lee, H. L. Chen, J. C. Hsu, and C. L. Tien, “Interference coatings based on synthesis silicon nitride,” Appl. Opt. 38, 2078–2082 (1999). [CrossRef]
  39. M. Lipinski, S. Kluska, H. Czternastek, and P. Zieba, “Graded SiOxNy layers as antireflection coatings for solar cells application,” Mater. Sci. 24, 1009–1016 (2006).
  40. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8, 584–586 (1983). [CrossRef]
  41. C. C. Lee, Thin Film Optics and Coating Technology, 7th ed. (Hsien, 2012).
  42. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573–4579 (2003). [CrossRef]
  43. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L.-C. Chen, “Improved broadband and quasiomnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007). [CrossRef]
  44. U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt. 50, C31–C35 (2011). [CrossRef]
  45. B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20, 375301 (2009). [CrossRef]
  46. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  47. I. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).
  48. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
  49. Y. J. Jen, A. Lakhtakia, C. W. Yu, C. F. Lin, M. J. Lin, S. H. Wang, and J. R. Lai, “Bio-inspired achromatic waveplates for visible light,” Nat. Commun. 2, 363 (2011). [CrossRef]
  50. Y. Zheng, K. Kikuchi, M. Yamasaki, K. Sonoi, and K. Uehara, “Two-layer wideband antireflection coatings with an absorbing layer,” Appl. Opt. 36, 6335–6338 (1997). [CrossRef]
  51. H. Ishikawa and B. Lippey, “Two layer broad band AR coating,” Proceedings of 10th International Conference on Vacuum Web Coating (Bakish Materials Corporation, 1996), pp. 221–233 .
  52. G. McHale, N. J. Shirtcliffe, and M. I. Newton, “Contact-angle hysteresis on super-hydrophobic surfaces,” Langmuir 20, 10146–10149 (2004). [CrossRef]
  53. L. Mascia and T. Tang, “Polyperfluoroether-silica hybrids,” Polymer 39, 3045–3057 (1998). [CrossRef]
  54. K. C. Camargo, A. F. Michels, F. S. Rodembusch, M. F. Kuhn, and F. Horowitz, “Visibly transparent and near infrared, wideangle, anti-reflection coatings with simultaneous self-cleaning on glass,” Opt. Mater. Express 2, 969–977 (2012). [CrossRef]
  55. M. Flemming and A. Duparre, “Design and characterization of nanostructured ultrahydrophobic coatings,” Appl. Opt. 45, 1397–1401 (2006). [CrossRef]
  56. K. Zhang, F. Zhu, C. H. A. Huan, and A. T. S. Wee, “Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature,” Thin Solid Films 376, 255–263 (2000). [CrossRef]
  57. K. Tominaga, N. Umezu, I. Mori, T. Ushiro, T. Morifa, and I. Nakabaayashi, “Transparent conductive ZnO film preparation by alternating sputtering of ZnO:Al and Zn or Al targets,” Thin Solid Films 334, 35–39 (1998). [CrossRef]
  58. V. Bhosle, A. Tiwari, and J. Narayan, “Electrical properties of transparent and conducting Ga doped ZnO,” J. Appl. Phys. 100, 033713 (2006). [CrossRef]
  59. Y. S. He, J. C. Campbell, and R. C. Murphy, “Electrical and optical characterization of Sb : SnO2,” J. Mater. Res. 8, 3131–3134 (1993). [CrossRef]
  60. M. C. Li, C. C. Kuo, S. H. Peng, S. H. Chen, and C. C. Lee, “Influence of hydrogen on the properties of Al and Ga-doped ZnO films at room temperature,” Appl. Opt. 50, C197–C200 (2011). [CrossRef]
  61. B. H. Liao, C. C. Kuo, P. J. Chen, and C. C. Lee, “Fluorine-doped tin oxide films grown by pulsed direct current magnetron sputtering with an Sn target,” Appl. Opt. 50, C106–C110 (2011). [CrossRef]
  62. G. M. Harry, M. R. Abernathy, A. E. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfield, C. Nwabugwu, A. Villar, D. R. M. Crooks, G. Cagnoli, J. Hough, C. R. How, I. MacLaren, P. Murray, S. Reid, S. Rowan, P. H. Sneddon, M. M. Fejer, R. Route, S. D. Penn, P. Ganau, J.-M. Mackowski, C. Michel, L. Pinard, and A. Remillieux, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Grav. 24, 405–415 (2007). [CrossRef]
  63. E. D. Black, A. Villar, K. Barbary, A. Bushmaker, J. Heefner, S. Kawamura, F. Kawazoe, L. Matone, S. Meidt, S. R. Rao, K. Schulz, M. Zhang, and K. G. Libbrecht, “Direct observation of broadband coating thermal noise in a suspended interferometer,” Phys. Lett. A 328, 1–5 (2004). [CrossRef]
  64. LIGO Scientific Collaboration, “Instrument science white paper,” LIGO, Document T1100309-V5 (2011).
  65. I. M. Pinto, M. Principe, and R. DeSalvo, “Reflectivity and thickness optimisation,” in Optical Coatings and Thermal Noise in Precision Measurement, G. Harry, T. P. Bodiya, and R. Desalvo, eds. (Cambridge University, 2012), Chap. 13, pp. 217–229
  66. U. Schulz, “Review of modern techniques to generate antireflective properties on thermoplastic polymers,” Appl. Opt. 45, 1608–1618 (2006). [CrossRef]
  67. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc. 130, 4007–4015 (2008). [CrossRef]
  68. F. Flory, L. Escoubas, and G. Berginc, “Optical properties of nanostructured materials: a review,” J. Nanophoton. 5, 052502 (2011). [CrossRef]
  69. B. H. Liao and C. C. Lee, “Antireflection coatings for deep ultraviolet optics deposited by magnetron sputtering from Al targets,” Opt. Express 19, 7507–7512 (2011). [CrossRef]
  70. M. L. Lo, T. H. Yang, and C. C. Lee, “Fabrication of a tunable daylight simulator,” Appl. Opt. 50, C95–C99 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited