OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: 90–95

Agarose gel-coated LPG based on two sensing mechanisms for relative humidity measurement

Yinping Miao, Kaikiang Zhang, Yujie Yuam, Bo Liu, Hao Zhang, Yan Liu, and Jianquan Yao  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. 90-95 (2013)
http://dx.doi.org/10.1364/AO.52.000090


View Full Text Article

Enhanced HTML    Acrobat PDF (589 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A relative humidity (RH) sensor based on long-period grating (LPG) with different responses is proposed by utilizing agarose gel as the sensitive cladding film. The spectral characteristic is discussed as the ambient humidity level ranges from 25% to 95% RH. Since increment of RH will result in volume expansion and refractive index increment of the agarose gel, the LPG is sensitive to applied strain and ambient refractive index; both the resonance wavelength and coupling intensity present particular responses to RH within two different RH ranges (25%–65% RH and 65%–96% RH). The coupling intensity decreases within a lower RH range while it increases throughout a higher RH range. The resonance wavelength is sensitive to the higher RH levels, and the highest sensitivity reaches 114.7 pm / % RH , and shares the same RH turning point with coupling intensity response. From a practical perspective, the proposed RH sensor would find its potential applications in high humidity level, temperature-independent RH sensing and multiparameter sensing based on wavelength/power hybrid demodulation and even static RH alarm for automatic monitoring of a particular RH value owing to the nonmonotonic RH dependence of the transmission power within the whole tested RH range.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 8, 2012
Revised Manuscript: November 25, 2012
Manuscript Accepted: November 27, 2012
Published: December 21, 2012

Citation
Yinping Miao, Kaikiang Zhang, Yujie Yuam, Bo Liu, Hao Zhang, Yan Liu, and Jianquan Yao, "Agarose gel-coated LPG based on two sensing mechanisms for relative humidity measurement," Appl. Opt. 52, 90-95 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-90


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Xu, J. C. Fanguy, K. Soni, and S. Tao, “Optical fiber humidity sensor based on evanescent-wave scattering,” Opt. Lett. 29, 1191–1193 (2004). [CrossRef]
  2. J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” IEEE J. Lightwave Technol. 24, 4329–4336 (2006). [CrossRef]
  3. I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7, 89–95 (2007). [CrossRef]
  4. S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003). [CrossRef]
  5. P. Kronenbery, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27, 1385–1387 (2002). [CrossRef]
  6. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–155 (2005). [CrossRef]
  7. Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating coated with polyvinyl alcohol film,” IEEE Photon. Technol. Lett. 21, 441–443 (2009). [CrossRef]
  8. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir–Blodgett thin-film overlays,” Opt. Lett. 27, 686–688 (2002). [CrossRef]
  9. L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “A relative humidity sensor using a hydrogel-coated long period grating,” Meas. Sci. Technol. 18, 3131–3134 (2007). [CrossRef]
  10. F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matias, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B 96, 165–172(2003). [CrossRef]
  11. K. M. Tan, C. C. Chan, L. Mohanty, and C. Meng Tay, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005). [CrossRef]
  12. P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27, 1385–1387 (2002). [CrossRef]
  13. M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45, 4567–4571 (2006). [CrossRef]
  14. J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Enhanced sensitivity in humidity sensors based on long period fiber gratings,” presented at IEEE SENSORS, EXCO, Daegu, Korea, October 22–25, 2006.
  15. J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. Nanotechnol. 7, 394–400 (2008). [CrossRef]
  16. D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, and I. R. Matias, “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009). [CrossRef]
  17. K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007). [CrossRef]
  18. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14, 1760–1773(1997). [CrossRef]
  19. S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003). [CrossRef]
  20. Z. H. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92, 044105 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited