OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A102–A116

Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited]

Marc P. Georges, Jean-François Vandenrijt, Cédric Thizy, Yvan Stockman, Patrick Queeckers, Frank Dubois, and Dominic Doyle  »View Author Affiliations

Applied Optics, Vol. 52, Issue 1, pp. A102-A116 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1608 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Digital holographic interferometry in the long-wave infrared domain has been developed by combining a CO2 laser and a microbolometer array. The long wavelength allows large deformation measurements, which are of interest in the case of large space reflectors undergoing thermal changes when in orbit. We review holography at such wavelengths and present some specific aspects related to this spectral range on our measurements. For the design of our digital holographic interferometer, we studied the possibility of illuminating specular objects by a reflective diffuser. We discuss the development of the interferometer and the results obtained on a representative space reflector, first in the laboratory and then during vacuum cryogenic test.

© 2012 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(090.2880) Holography : Holographic interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(090.1995) Holography : Digital holography

Original Manuscript: August 14, 2012
Manuscript Accepted: August 31, 2012
Published: November 1, 2012

Virtual Issues
December 12, 2012 Spotlight on Optics

Marc P. Georges, Jean-François Vandenrijt, Cédric Thizy, Yvan Stockman, Patrick Queeckers, Frank Dubois, and Dominic Doyle, "Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited]," Appl. Opt. 52, A102-A116 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Malacara, ed., Optical Shop Testing (Wiley-VCH, 2007).
  2. T. Kreis, Handbook of Holographic Interferometry—Optical and Digital Methods (Wiley-VCH, 2005).
  3. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000). [CrossRef]
  4. M. A. Sutton, J.-J. Orteu, and H. W. Schreifer, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).
  5. X. Su and Q. Zhang, “Dynamic 3-D shape measurement: a review,” Opt. Lasers Eng. 48, 191–204 (2010). [CrossRef]
  6. R. S. Pappa, J. T. Black, J. R. Blandino, T. W. Jones, P. M. Danehy, and A. A. Dorrington, “Dot-projection photogrammetry and videogrammetry of Gossamer space structures,” J. Spacecr. Rockets 40, 858–867 (2003). [CrossRef]
  7. C. S. Fraser, “Photogrammetric measurement to one part in a million,” Photogramm. Eng. Remote Sens. 53, 305–310 (1992).
  8. J. A. Parian, A. Gruen, and A. Cozzani, “Monitoring of the reflectors of ESA’s Planck telescope by close-range photogrammetry,” J. Appl. Geodesy 1, 137–145 (2007). [CrossRef]
  9. O. Kwon, J. C. Wyant, and C. R. Hayslett, “Rough surface interferometry at 10.6 μm,” Appl. Opt. 19, 1862–1869 (1980). [CrossRef]
  10. K. Verma and B. Han, “Far-infrared Fizeau interferometry,” Appl. Opt. 40, 4981–4987 (2001). [CrossRef]
  11. N. Ninane and A. Mazzoli, “Development of a high spatial resolution interferometer,” ESA General Support Technology Programme, contract Nr 16286/02/NL/PA, Summary Rep., May 2005, available upon request to the authors.
  12. http://www.esa.int/SPECIALS/Planck/index.html .
  13. S. Roose, Y. Houbrechts, A. Mazzoli, N. Ninane, Y. Stockman, R. Daddato, V. Kirschner, L. Venacio, and D. de Chambure, “Cryo-optical testing of large aspheric reflectors operating in the sub mm range,” Proc. SPIE 6148, 61480F (2006). [CrossRef]
  14. N. Ninane and M. P. Georges, “Holographic interferometry using two-wavelength holography for the measurement of large deformations,” Appl. Opt. 34, 1923–1928 (1995). [CrossRef]
  15. M. P. Georges and Ph. C. Lemaire, “Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects,” Appl. Phys. B 68, 1073–1083 (1999). [CrossRef]
  16. M. P. Georges, V. S. Scauflaire, and Ph. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems,” Appl. Phys. B 72, 761–765 (2001). [CrossRef]
  17. C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005). [CrossRef]
  18. C. Thizy, Y. Stockman, Ph. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, D. Doyle, and G. Ulbrich, “Qualification of large reflectors in space environment with a holographic camera based on a BSO crystal,” in Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. Nolte, and J. Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics, (Optical Society of America, 2005), paper 707.
  19. C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
  20. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). [CrossRef]
  21. U. Schnars and W. Jueptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef]
  22. U. Schnars and W. Jueptner, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994). [CrossRef]
  23. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Reconstruction Principle, and Related Techniques (Springer, 2005).
  24. T.-C. Poon, Digital Holography and Three-Dimensional Display (Springer, 2006).
  25. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. I. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45, 864–871 (2006). [CrossRef]
  26. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 453456–3462 (2006). [CrossRef]
  27. A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18, 14159–14164 (2010). [CrossRef]
  28. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003). [CrossRef]
  29. M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19, 9192–9200 (2011). [CrossRef]
  30. R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260, 469–473 (2006). [CrossRef]
  31. J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6 μm,” Appl. Phys. Lett. 15, 123–125 (1969). [CrossRef]
  32. R. R. Roberts and T. D. Black, “Infrared holograms recorded at 10.6 μm and reconstructed at 0.6328 μm,” Appl. Opt. 15, 2018–2019 (1976). [CrossRef]
  33. W. A. Simpson and W. E. Deeds, “Real-time visual reconstruction of infrared holograms,” Appl. Opt. 9, 499–501 (1970). [CrossRef]
  34. S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484 (1971). [CrossRef]
  35. G. Decker, H. Herold, and H. Röhr, “Holography and holographic interferometry with pulsed high power infrared lasers,” Appl. Phys. Lett. 20, 490–492 (1972). [CrossRef]
  36. P. R. Forman, S. Humphries, and R. W. Peterson, “Pulsed holographic interferometry at 10.6 μm,” Appl. Phys. Lett. 22, 537–539 (1973). [CrossRef]
  37. M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, and D. Bélanger, “Plastic recording media for holography at 10.6 μm,” Appl. Opt. 16, 1876–1879 (1977). [CrossRef]
  38. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977). [CrossRef]
  39. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Pulsed IR holography on takiwax films,” Appl. Opt. 17, 3619–3621 (1978). [CrossRef]
  40. J. Lewandowski, B. Mongeau, and M. Cormier, “Real-time interferometry using IR holography on oil films,” Appl. Opt. 23, 242–246 (1984). [CrossRef]
  41. R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6 μm,” Proc. SPIE 2042, 259–263 (1994).
  42. R. Beaulieu, R. A. Lessard, and S. Ling Chin, “Recording of infrared radiation (10.6 μm) in a tetrafluoroethylene copolymer of vinylidene fluoride,” in Proceedings of the International Conference on Lasers ’94 (STS Press, 1994), pp. 758–762.
  43. R. Beaulieu and R. A. Lessard, “Infrared holography on poly (acrylic acid) films,” Proc. SPIE 4087, 1298–1301 (2000). [CrossRef]
  44. S. Calixto, “Albumen as a relief recording media for spatial distributions of infrared radiation. fabrication of interference gratings and microlenses,” Appl. Opt. 42, 259–263 (2003). [CrossRef]
  45. O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16, 187–192 (1984). [CrossRef]
  46. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008). [CrossRef]
  47. P. W. Kruse, Uncooled Thermal Imaging. Arrays, Systems and Applications (SPIE, 2001).
  48. S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008). [CrossRef]
  49. J. L. Tissot, “IR detection with uncooled focal plane arrays. State-of-the-art and trends,” Opto-Electron. Rev. 12, 105–109(2004).
  50. N. George, K. Khare, and W. Chi, “Infrared holography using a microbolometer array,” Appl. Opt. 47, A7–A12 (2008). [CrossRef]
  51. B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
  52. J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 μm,” Proc. SPIE 6616, 66162Q1 (2007).
  53. J.-F. Vandenrijt, and M. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010). [CrossRef]
  54. I. Alexeenko, J.-F. Vandenrijt, M. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010). [CrossRef]
  55. I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. Georges, “Nondestructive testing by using long wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52, A56–A67 (2013)..
  56. M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 μm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35, 2112–2114 (2010). [CrossRef]
  57. A. Geltrude, M. Locatelli, P. Poggi, A. Pelagotti, M. Paturzo, P. Ferraro, and R. Meucci, “Infrared digital holography for large objects investigation,” Proc. SPIE 8082, 80820C (2011). [CrossRef]
  58. A. Pelagotti, M. Paturzo, A. Geltrude, M. Locatelli, R. Meucci, P. Poggi, and P. Ferraro, “Digital holography for 3D imaging and display in the IR range: challenges and opportunities,” 3D Res. 1, 1–10 (2010). [CrossRef]
  59. T. Kreis and W. Jüptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997). [CrossRef]
  60. Ø. Skotheim, “HoloVision: a software package for reconstruction and analysis of digitally sampled holograms,” Proc. SPIE 4933, 311–316 (2003). [CrossRef]
  61. I. Yamaguchi, “Fundamentals and applications of speckle,” Proc. SPIE 4933, 1–8 (2003). [CrossRef]
  62. J. C. Stover, Optical Scattering—Measurement and Analysis (McGraw-Hill, 1990).
  63. J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. Sáez de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. Scattering requirements,” in Proceedings of Fringe 2009, 6th International Workshop on Advanced Optical Metrology (Springer, 2009), pp. 1–4.
  64. R. Pawluczyk and Z. Kraska, “Diffusive illumination in holographic double-aperture interferometry,” Appl. Opt. 24, 3072–3078 (1985). [CrossRef]
  65. R. S. Hansen, “Deformation measurement of specularly reflecting objects using holographic interferometry with diffusive illumination,” Opt. Lasers Eng. 28, 259–275(1997). [CrossRef]
  66. R. S. Hansen, “A compact ESPI system for displacement measurements of specular reflecting or optical rough surfaces,” Opt. Lasers Eng. 41, 73–80 (2004). [CrossRef]
  67. F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999). [CrossRef]
  68. http://smsc.cnes.fr/HERSCHEL/index.htm .
  69. J. Mundt and T. Kreis, “Digital holographic recording and reconstruction of large objects for metrology and display,” Opt. Eng. 49, 125801 (2010). [CrossRef]
  70. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  71. http://www.csl.ulg.ac.be/index.php?page=37 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3946 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited