OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A117–A130

Incoherent digital holographic adaptive optics

Myung K. Kim  »View Author Affiliations

Applied Optics, Vol. 52, Issue 1, pp. A117-A130 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3459 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An adaptive optical system based on incoherent digital holography is described. Theoretical and experimental studies show that wavefront sensing and compensation can be achieved by numerical processing of digital holograms of incoherent objects and a guide star, thereby dispensing with the hardware components of conventional adaptive optics systems, such as lenslet arrays and deformable mirrors. The incoherent digital holographic adaptive optics (IDHAO) process is seen to be robust and effective under various ranges of parameters, such as aberration type and strength. Furthermore, low and noisy image signals can be extracted by IDHAO to yield high-quality images with good contrast and resolution, both for point-like and continuous extended objects, illuminated with common incoherent light. Potential applications in astronomical and other imaging systems appear plausible.

© 2013 Optical Society of America

OCIS Codes
(350.1260) Other areas of optics : Astronomical optics
(090.1995) Holography : Digital holography
(110.1080) Imaging systems : Active or adaptive optics

Original Manuscript: August 15, 2012
Manuscript Accepted: October 5, 2012
Published: November 6, 2012

Virtual Issues
February 5, 2013 Spotlight on Optics

Myung K. Kim, "Incoherent digital holographic adaptive optics," Appl. Opt. 52, A117-A130 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953). [CrossRef]
  2. H. W. Babcock, “Adaptive optics revisited,” Science 249, 253–257 (1990). [CrossRef]
  3. J. W. Hardy, Adaptive Optics for Astronomical Telescopes(Oxford University, 1998).
  4. R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2011).
  5. J. Porter, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications (Wiley, 2006).
  6. S. Avino, E. Calloni, J. T. Baker, F. Barone, R. DeRosa, L. DiFiore, L. Milano, and S. R. Restaino, “First adaptive optics control of laser beam based on interferometric phase-front detection,” Rev. Sci. Instrum. 76, 083119 (2005). [CrossRef]
  7. R. K. Tyson, Introduction to Adaptive Optics (SPIE, 2000).
  8. M. C. Roggemann, B. M. Welsh, and R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 437–506 (1997). [CrossRef]
  9. C. G. Liu and M. K. Kim, “Digital holographic adaptive optics for ocular imaging: proof of principle,” Opt. Lett. 36, 2710–2712 (2011). [CrossRef]
  10. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).
  11. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010). [CrossRef]
  12. J. Upatnieks, A. V. Lugt, and E. N. Leith, “Correction of lens aberrations by means of holograms,” Appl. Opt. 5, 589–593 (1966). [CrossRef]
  13. R. A. Fisher, Optical Phase Conjugation (Academic, 1983).
  14. A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964). [CrossRef]
  15. J. Kuhn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008). [CrossRef]
  16. B. Rappaz, A. Barbul, F. Charriere, J. Kuhn, P. Marquet, R. Korenstein, C. Depeursinge, and P. J. Magistretti, “Erythrocytes analysis with a digital holographic microscope,” Proc. SPIE 6631, 66310H (2007). [CrossRef]
  17. C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005). [CrossRef]
  18. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007). [CrossRef]
  19. T. Colomb, F. Montfort, J. Kuhn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006). [CrossRef]
  20. E. N. Leith and J. Upatniek, “Holography with achromatic-fringe systems,” J. Opt. Soc. Am. 57, 975–980 (1967). [CrossRef]
  21. G. Cochran, “New method of making Fresnel transforms with incoherent light,” J. Opt. Soc. Am. 56, 1513–1517(1966). [CrossRef]
  22. G. Sirat and D. Psaltis, “Conoscopic holography,” Opt. Lett. 10, 4–6 (1985). [CrossRef]
  23. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  24. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45, 864–871 (2006). [CrossRef]
  25. S. G. Kim, B. Lee, and E. S. Kim, “Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram,” Appl. Opt. 36, 4784–4791 (1997). [CrossRef]
  26. L. M. Mugnier, G. Y. Sirat, and D. Charlot, “Conoscopic holography: two-dimensional numerical reconstructions,” Opt. Lett. 18, 66–68 (1993). [CrossRef]
  27. T. C. Poon, “Optical scanning holography—a review of recent progress,” J. Opt. Soc. Korea 13, 406–415 (2009). [CrossRef]
  28. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007). [CrossRef]
  29. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008). [CrossRef]
  30. J. Rosen and G. Brooker, “Fluorescence incoherent color holography,” Opt. Express 15, 2244–2250 (2007). [CrossRef]
  31. M. K. Kim, “Adaptive optics by incoherent digital holography,” Opt. Lett. 37, 2694–2696 (2012). [CrossRef]
  32. J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19, 26249–26268 (2011). [CrossRef]
  33. G. Brooker, N. Siegel, V. Wang, and J. Rosen, “Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy,” Opt. Express 19, 5047–5062(2011). [CrossRef]
  34. B. Katz, D. Wulich, and J. Rosen, “Optimal noise suppression in Fresnel incoherent correlation holography (FINCH) configured for maximum imaging resolution,” Appl. Opt. 49, 5757–5763 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited