OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A136–A146

Evaluation of surface acoustic waves on the human skin using quasi-time-averaged digital Fresnel holograms

Mathieu Leclercq, Mayssa Karray, Vincent Isnard, François Gautier, and Pascal Picart  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. A136-A146 (2013)
http://dx.doi.org/10.1364/AO.52.00A136


View Full Text Article

Acrobat PDF (1683 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper proposes a first attempt to visualize and analyze the vibrations induced by a bone-conduction device and propagating at the surface of the skin of a human face. The method is based on a new approach in a so-called quasi-time-averaging regime, resulting in the retrieval of the vibration amplitude and phase from a sequence of digital Fresnel holograms recorded with a high image rate. The design of the algorithm depends on the ratio between the exposure time and the vibration period. The results show the propagation of vibrations at the skin surface, and quantitative analysis is achieved by the proposed approach.

© 2012 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.7250) Remote sensing and sensors : Velocimetry
(090.1995) Holography : Digital holography

History
Original Manuscript: July 26, 2012
Revised Manuscript: October 11, 2012
Manuscript Accepted: October 11, 2012
Published: November 13, 2012

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Mathieu Leclercq, Mayssa Karray, Vincent Isnard, François Gautier, and Pascal Picart, "Evaluation of surface acoustic waves on the human skin using quasi-time-averaged digital Fresnel holograms," Appl. Opt. 52, A136-A146 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-A136


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Kreis, Holographic Interferometry: Principles and Methods, Vol. 1 of Akademie Verlag Series in Optical Metrology(Akademie Verlag Gmbh, 1996).
  2. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef]
  3. R. L. Powell and K. A. Stetson, “Interferometric analysis by wavefront reconstruction,” J. Opt. Soc. Am. A 55, 1593–1598(1965). [CrossRef]
  4. K. A. Stetson and R. L. Powell, “Interferometric hologram evaluation and real-time vibration analysis of diffuse objects,” J. Opt. Soc. Am. A 55, 1694–1695 (1965). [CrossRef]
  5. B. M. Watrasie and P. Spicer, “Vibration analysis by stroboscopic holography,” Nature 217, 1142–1143 (1968). [CrossRef]
  6. P. A. Fryer, “Vibration analysis by holography,” Rep. Prog. Phys. 33, 489–532 (1970). [CrossRef]
  7. O. J. Lokberg, “Vibration analysis by holography,” Phys. Norv. 4, 257–264 (1970).
  8. S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” J. Acoust. Soc. Am. 51, 1904–1920 (1972). [CrossRef]
  9. C. R. Hazell and S. D. Liem, “Vibration analysis of plates by real-time stroboscopic holography,” Exp. Mech. 13, 339–344 (1973). [CrossRef]
  10. P. Shajenko and P. Cable, “Vibration mode discrimination using pulsed holography,” J. Opt. Soc. Am. A 56, S9-S9 (1974).
  11. J. Hladky, “Application of holography in analysis of vibrations of loudspeaker diaphragms,” J. Audio Eng. Soc. 22, 247–250 (1974).
  12. H. M. Pedersen, O. J. Lokberg, and B. M. Forre, “Vibration measurement using a TV speckle interferometer with silicon target vidicon,” Opt. Commun. 12, 421–426 (1974). [CrossRef]
  13. O. J. Lokberg and K. Hogmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E 9, 847–851 (1976). [CrossRef]
  14. P. C. Gupta and K. Singh, “Characteristic fringe function for time-average holography of periodic non sinusoidal vibrations,” Appl. Opt. 14, 129–133 (1975).
  15. R. Tonin and C. D. A. Bies, “Time-averaged holography for study of 3-dimensional vibrations,” J. Sound Vib. 52, 315–323 (1977). [CrossRef]
  16. H. E. Hoyer and J. Dorheide, “A study of human head vibrations using time-averaged holography,” J. Neurosurg. 58, 729–733 (1983). [CrossRef]
  17. E. Vikhagen, “Vibration measurement using phase-shifting TV-holography and digital image-processing,” Opt. Commun. 69, 214–218 (1989). [CrossRef]
  18. B. X. Lu, Z. G. Hu, H. Abendoth, H. Eggers, and E. Ziolkowski, “Improvement of time-average subtraction technique applied to vibration analysis with TV-holography,” Opt. Commun. 78, 217–221 (1990). [CrossRef]
  19. C. Jonathan and B. M. Khorana, “Contrast of the vibration fringes in time-averaged electronic speckle-pattern interferometry: effect of speckle averaging,” Appl. Opt. 31, 1863–1870 (1992). [CrossRef]
  20. C. S. Vikram, “Frequency-shifting for numerical analysis in time-average holography of vibrations,” Optik 93, 155–156 (1993).
  21. G. C. Brown and R. J. Pryputniewicz, “Holographic microscope for measuring displacements of vibrating microbeams using time-averaged electro-optic holography,” Opt. Eng. 37, 1398–1405 (1998). [CrossRef]
  22. A. R. Ganesan, K. D. Hinsch, and P. Meinlschmidt, “Transition between rationally and irrationally related vibration modes in time-average holography,” Opt. Commun. 174, 347–353 (2000). [CrossRef]
  23. P. Picart, J. Leval, D. Mounier, and S. Gougeon, “Time averaged digital holography,” Opt. Lett. 28, 1900–1902 (2003). [CrossRef]
  24. F. Pinard, B. Laine, and H. Vach, “Musical quality assessment of clarinets reeds using optical holography,” J. Acoust. Soc. Am. 113, 1736–1742 (2003). [CrossRef]
  25. P. Picart, J. Leval, D. Mounier, and S. Gougeon, “Some opportunities for vibration analysis with time-averaging in digital Fresnel holography,” Appl. Opt. 44, 337–343 (2005). [CrossRef]
  26. D. N. Borza, “High-resolution time average electronic holography for vibration measurement,” Opt. Lasers Eng. 41, 515–527 (2004). [CrossRef]
  27. D. N. Borza, “Mechanical vibration measurement by high-resolution time-averaged digital holography,” Meas. Sci. Technol. 16, 1853–1864 (2005). [CrossRef]
  28. N. Demoli and D. Vukicevic, “Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry,” Opt. Lett. 29, 2423–2425 (2004). [CrossRef]
  29. N. Demoli and I. Demoli, “Measuring surface vibrations of musical instruments using an inexpensive digital holography device,” Opt. Eng. 44, 090502 (2005). [CrossRef]
  30. N. Demoli and I. Demoli, “Dynamic modal characterization of musical instruments using digital holography,” Opt. Express 13, 4812–4817 (2005). [CrossRef]
  31. A. Asundi and V. R. Singh, “Time-averaged in-line digital holographic interferometry for vibration analysis,” Appl. Opt. 45, 2391–2395 (2006). [CrossRef]
  32. D. N. Borza, “Full-field vibration amplitude recovery from high-resolution time-averaged speckle interferograms and digital holograms by regional inverting of the Bessel function,” Opt. Lasers Eng. 44, 747–770 (2006). [CrossRef]
  33. U. P. Kumar, Y. Kalyani, and K. N. Mohan, “Time-average TV holography for vibration fringe analysis,” Appl. Opt. 48, 3094–3101 (2009). [CrossRef]
  34. K.-S. Kim, H.-S. Chang, and N. Akhter, “Determination of Poisson’s ratio of a beam by time-average ESPI and Euler-Bernoulli equation,” Int. J. Precis. Eng. Man. 11, 979–982 (2010). [CrossRef]
  35. P. Picart, J. Leval, F. Piquet, J.-P. Boileau, T. Guimezanes, and J.-P. Dalmont, “Study of the mechanical behaviour of a clarinet reed under forced and auto-oscillations with digital Fresnel holography,” Strain 46, 89–100 (2010). [CrossRef]
  36. U. P. Kumar, K. N. Mohan, and M. P. Kothiyal, “Time average vibration fringe analysis using Hilbert transformation,” Appl. Opt. 49, 5777–5786 (2010). [CrossRef]
  37. C. R. Hazell and S. D. Liem, “Vibration analysis of plates by real time stroboscopic holography,” Exp. Mech. 13, 339–344 (1973). [CrossRef]
  38. D. J. Anderson, J. D. R. Valera, and J. D. C. Jones, “Electronic speckle pattern interferometry using diode laser stroboscopic illumination,” Meas. Sci. Technol. 4, 982–987 (1993). [CrossRef]
  39. G. Pedrini and H. J. Tiziani, “Digital double pulse holographic interferometry using Fresnel and image plane holograms,” Meas. 15, 251–260 (1995). [CrossRef]
  40. G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Digital double pulse holographic interferometry for vibration analysis,” J. Mod. Opt. 42, 367–374 (1995). [CrossRef]
  41. G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV holography,” Opt. Lasers Eng. 26, 199–219 (1997). [CrossRef]
  42. G. Pedrini, P. Froening, H. Fessler, and H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1998). [CrossRef]
  43. A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrio, C. Lopez, J. L. Fernandez, and M. Perez-Amor, “Measuring amplitude and phase of vibration with double exposure stroboscopic TV holography,” in Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J. M. Fournier, eds. (Springer, 2000), pp. 281–288.
  44. J. Leval, P. Picart, J.-P. Boileau, and J.-C. Pascal, “Full field vibrometry with digital Fresnel holography,” Appl. Opt. 44, 5763–5771 (2005). [CrossRef]
  45. J. C. Pascal, X. Carniel, V. Chalvidan, and P. Smigielski, “Determination of phase and magnitude of vibration for energy flow measurements in a plate using holographic interferometry,” Opt. Lasers Eng. 25, 343–360 (1996). [CrossRef]
  46. J. P. Chambard, V. Chalvidan, X. Carniel, and J. C. Pascal, “Pulsed TV-holography recording for vibration analysis applications,” Opt. Lasers Eng. 38, 131–143 (2002). [CrossRef]
  47. G. Pedrini, S. Schedin, and H. J. Tiziani, “Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects,” Opt. Lasers Eng. 38, 117–129 (2002). [CrossRef]
  48. C. Trillo, A. F. Doval, D. Cernadas, O. Lopez, B. V. Dorrio, J. L. Fernandez, and M. Pérez-Amor, “Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed TV holography and a two-stage spatial Fourier transform method,” Meas. Sci. Technol. 14, 2127–2134 (2003). [CrossRef]
  49. P. Picart, J. Leval, F. Piquet, J.-P. Boileau, T. Guimezanes, and J.-P. Dalmont, “Tracking high amplitude auto-oscillations with digital Fresnel holograms,” Opt. Express 15, 8263–8274 (2007). [CrossRef]
  50. S. S. Munoz, F. Mendoza Santoyo, and M. del Socorro Hernandez-Montes, “3D displacement measurements of the tympanic membrane with digital holographic interferometry,” Opt. Express 20, 5613–5621 (2012). [CrossRef]
  51. F. Joud, F. Laloe, M. Atlan, J. Hare, and M. Gross, “Imaging a vibrating object by sideband digital holography,” Opt. Express 17, 2774–2779 (2009). [CrossRef]
  52. F. Joud, F. Verpillat, F. Laloë, M. Atlan, J. Hare, and M. Gross, “Fringe-free holographic measurements of large-amplitude vibrations,” Opt. Lett. 34, 3698–3700 (2009). [CrossRef]
  53. B. Samson, F. Verpillat, M. Gross, and M. Atlan, “Video-rate laser Doppler vibrometry by heterodyne holography,” Opt. Lett. 36, 1449–1451 (2011). [CrossRef]
  54. A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones, “Transient deformation measurement with electronic speckle pattern interferometry and a high-speed camera,” Appl. Opt. 38, 1159–1162 (1999). [CrossRef]
  55. C. Pérez-López, M. de la Torre-Ibarra, and F. Mendoza Santoyo, “Very high speed cw digital holographic interferometry,” Opt. Express 14, 9709–9715 (2006). [CrossRef]
  56. Y. Fu, G. Pedrini, and W. Osten, “Vibration measurement by temporal Fourier analysis of a digital hologram sequence,” Appl. Opt. 46, 5719–5727 (2007). [CrossRef]
  57. C. Trillo, A. F. Doval, F. Mendoza-Santoyo, C. Pérez-López, M. de la Torre-Ibarra, and J. L. Deán, “Multimode vibration analysis with high-speed TV holography and a spatiotemporal 3D Fourier transform method,” Opt. Express 17, 18014–18025 (2009). [CrossRef]
  58. D. Aguayo, F. M. Mendoza Santoyo, M. de la Torre-Ibarra, M. D. Salas-Araiza, C. Caloca-Mendez, and D. A. Gutierrez Hernandez, “Insect wing deformation measurements using high speed digital holographic interferometry,” Opt. Express 18, 5661–5667 (2010). [CrossRef]
  59. S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16, 116005(2011). [CrossRef]
  60. K. Mohan, W. Sanders, and A. Oldenburg, “Elastic depth profiling of soft tissue by holographic imaging of surface acoustic waves,” presented at Digital Holography and Three-Dimensional Imaging (DH) 2012, 28 April–2 May 2012, Miami, FL, paper DSu4C.5.
  61. G. O. Rosvold and O. J. Lokberg, “Effect and use of exposure control in vibration analysis using TV holography,” Appl. Opt. 32, 684–691 (1993). [CrossRef]
  62. S. Johansson and K. G. Predko, “Performance of a phase-shifting speckle interferometer for measuring deformation and vibration,” J. Phys. E 22, 289–292 (1989). [CrossRef]
  63. P. Criton, “Expériences d’écoute par le toucher,” http://www.cnrs.fr/insis/recherche/docs-evenements/ecouter-autrement.pdf .
  64. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill Education, 1996).
  65. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008). [CrossRef]
  66. T. Kreis, M. Adams, and W. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997). [CrossRef]
  67. J. E. Greivenkamp, “Generalized data reduction for heterodyne interferometry,” Opt. Eng. 23, 350–352 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited