OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A195–A200

Speckle denoising in digital holography by nonlocal means filtering

Amitai Uzan, Yair Rivenson, and Adrian Stern  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. A195-A200 (2013)
http://dx.doi.org/10.1364/AO.52.00A195


View Full Text Article

Enhanced HTML    Acrobat PDF (498 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the effectiveness of the nonlocal means (NLM) filter for speckle denoising in digital holography. The speckle noise adapted version of the NLM filter is compared with other common speckle denoising filters and is found to give better visual and quantitative results.

© 2012 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(030.6140) Coherence and statistical optics : Speckle
(100.2000) Image processing : Digital image processing
(090.1995) Holography : Digital holography

History
Original Manuscript: August 16, 2012
Revised Manuscript: September 30, 2012
Manuscript Accepted: October 1, 2012
Published: November 13, 2012

Citation
Amitai Uzan, Yair Rivenson, and Adrian Stern, "Speckle denoising in digital holography by nonlocal means filtering," Appl. Opt. 52, A195-A200 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-A195


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, Speckle Phenomena: Theory and Applications (Roberts, 2006).
  2. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). [CrossRef]
  3. T. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971). [CrossRef]
  4. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  5. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27, 2179–2181 (2002). [CrossRef]
  6. L. Yaroslavsky, Digital Holography and Digital Image Processing, Principles, Methods, Algorithms (Kluwer, 2004), pp. 72–77, 305–312.
  7. J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik 116, 44–48 (2005). [CrossRef]
  8. S. Mirza, R. Kumar, and C. Shakher, “Study of various preprocessing schemes and wavelet filters for speckle noise reduction in digital speckle pattern interferometric fringes,” Opt. Eng. 44, 045603 (2005). [CrossRef]
  9. P. Almoro, G. Pedrini, and W. Osten, “Aperture synthesis in phase retrieval using a volume-speckle field,” Opt. Lett. 32, 733–735 (2007). [CrossRef]
  10. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A 24, 1617–1622 (2007). [CrossRef]
  11. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47, D38–D43 (2008). [CrossRef]
  12. P. Feng, X. Wen, and R. Lu, “Long-working-distance synthetic aperture Fresnel off-axis digital holography,” Opt. Express 17, 5473–5480 (2009). [CrossRef]
  13. Y. K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17, 12285–12292 (2009). [CrossRef]
  14. S. Hertwig, H. Babovsky, A. Kiessling, and R. Kowarschik, “Reduction of speckles in digital holographic interferometry,” in Fringe 2009, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 184–188.
  15. L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8, 653–655 (2010). [CrossRef]
  16. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011). [CrossRef]
  17. F. Pan, W. Xiao, S. Liu, F. J. Wang, L. Rong, and R. Li, “Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object,” Opt. Express 19, 3862–3869 (2011). [CrossRef]
  18. V. Micó, C. Ferreira, and J. García, “Surpassing digital holography limits by lensless object scanning holography,” Opt. Express 20, 9382–9395 (2012). [CrossRef]
  19. J. S. Lee, “Digital image enhancement and noise filtering by use of local statistics,” IEEE Trans. Pattern Anal. Machine Intell. 2, 165–168 (1980). [CrossRef]
  20. D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, “Adaptive noise smoothing filter for images with signal-dependent noise”, IEEE Trans. Pattern Anal. Machine Intell. 7, 165–177 (1985). [CrossRef]
  21. V. S. Frost, J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, “A model for radar images and its application to adaptive digital filtering of multiplicative noise,” IEEE Trans. Pattern Anal. Machine Intell. 4, 157–166 (1982). [CrossRef]
  22. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” presented at Sixth International Conference on Computer Vision, Bombay, 4–7 Jan. 1998.
  23. G. S. S Sudha and R Sukanesh, “Speckle noise reduction in ultrasound images using context-based adaptive wavelet thresholding,” IETE J. Res. 55, 135–143 (2009). [CrossRef]
  24. A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2005), pp. 60–65.
  25. P. Coupe, P. Hellier, C. Kervrann, and C. Barillot, “Nonlocal means-based speckle filtering for ultrasound images,” IEEE Trans. Image Process. 18, 2221–2229 (2009). [CrossRef]
  26. C. Kervrann, J. Boulanger, and P. Coupé, “Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal,” in Proceedings of the 1st International Conference on Scale Space and Variational Methods in Computer Vision (Springer-Verlag, 2007), pp. 520–532.
  27. J. Salmon, “On two parameters for denoising with non-local means,” IEEE Signal Process. Lett. 17, 269–272 (2010). [CrossRef]
  28. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  29. A. Shamsoddini and J. C. Trinder, “Image texture preservation in speckle noise suppression,” presented at ISPRS TC VII Symposium—100 Years ISPRS, Vienna, Austria, 5–7 July 2010.
  30. G. H. Sendra, H. J. Rabal, M. Trivi, and R. Arizaga, “Numerical model for simulation of dynamic speckle reference patterns,” Opt. Commun. 282, 3693–3700 (2009). [CrossRef]
  31. Available at http://wintech-nano.com/services_ic_SignalTapout/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited