OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A223–A231

Improved depth resolution by single-exposure in-line compressive holography

Yair Rivenson, Adrian Stern, and Bahram Javidi  »View Author Affiliations

Applied Optics, Vol. 52, Issue 1, pp. A223-A231 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1353 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A single-exposure in-line (SEOL) holography is a digital holographic setup that has been used in the study of cell identification. In this paper we demonstrate improved three-dimensional performance of the SEOL holography setup by applying the principles of the recently introduced compressive-sensing theory. This, along with proper modeling of the sensing process, enables improved depth-resolution features, especially when considering noisy environments. We then study and demonstrate that by using the proper reference and object-beam amplitude partition, the compressive SEOL holography setup is found to be almost ideal. This occurs since it allows the recovery of low-signal-to-noise-ratio objects and rapid acquisition rate associated with the off-axis holography setup, combined with the high resolution and field of view associated with the in-line holography setup.

© 2012 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.3190) Image processing : Inverse problems
(100.6890) Image processing : Three-dimensional image processing
(100.6950) Image processing : Tomographic image processing
(110.1758) Imaging systems : Computational imaging
(090.1995) Holography : Digital holography

Original Manuscript: August 16, 2012
Revised Manuscript: October 28, 2012
Manuscript Accepted: October 28, 2012
Published: November 27, 2012

Yair Rivenson, Adrian Stern, and Bahram Javidi, "Improved depth resolution by single-exposure in-line compressive holography," Appl. Opt. 52, A223-A231 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006). [CrossRef]
  2. E. Candes and M. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008). [CrossRef]
  3. Y. Rivenson and A. Stern, “Conditions for practicing compressive Fresnel holography,” Opt. Lett. 36, 3365–3367 (2011). [CrossRef]
  4. Y. Rivenson, A. Rot, S. Balber, A. Stern, and J. Rosen, “Recovery of partially occluded objects by applying compressive Fresnel holography,” Opt. Lett. 37, 1757–1759 (2012). [CrossRef]
  5. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009). [CrossRef]
  6. L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009). [CrossRef]
  7. C. Fernandez Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010). [CrossRef]
  8. A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510–10523 (2010). [CrossRef]
  9. J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011). [CrossRef]
  10. Y. Liu, L. Tian, J. W. Lee, H. Y. H. Huang, M. S. Triantafyllou, and G. Barbastathis, “Scanning-free compressive holography for object localization with subpixel accuracy,” Opt. Lett. 37, 3357–3359 (2012). [CrossRef]
  11. K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt. 49, H1–H10 (2010). [CrossRef]
  12. M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Opt. Lett. 35, 871–873 (2010). [CrossRef]
  13. Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel holography,” J. Disp. Technol. 6, 506–509 (2010). [CrossRef]
  14. X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography,” J. Opt. Soc. Am. A 27, 1630–1637 (2010). [CrossRef]
  15. Y. Rivenson, A. Stern, and J. Rosen, “Compressive multiple view projection incoherent holography,” Opt. Express 19, 6109–6118 (2011). [CrossRef]
  16. A. Stern and B. Javidi, “3D optical microscopy using digital holography,” Proc. SPIE. 6983, 69830O (2008). [CrossRef]
  17. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13, 4492–4506 (2005). [CrossRef]
  18. S. Yeom and B. Javidi, “Automatic identification of biological microorganisms using three-dimensional complex morphology,” J. Biomed. Opt. 11, 024017 (2006). [CrossRef]
  19. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A 24, 163–168 (2007). [CrossRef]
  20. I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three-dimensional imaging, identification and tracking of micro/nano biological organisms by holographic microscopy,” Proc. IEEE 97, 990–1010 (2009). [CrossRef]
  21. D. M. Paganin, Coherent X-ray Optics (Oxford Science Publications, 2006).
  22. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999). [CrossRef]
  23. T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2004).
  24. G. B. Esmer, V. Uzunov, L. Onural, H. M. Ozaktas, and A. Gotchev, “Diffraction field computation from arbitrarily distributed data points in space,” Signal Process. Image Commun. 22, 178–187 (2007). [CrossRef]
  25. F. Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet, and C. Depeursinge, “Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy,” Appl. Opt. 45, 7667–7673 (2006). [CrossRef]
  26. A. Tippie and J. Fienup, “Weak-object image reconstructions with single-shot digital holography,” in Digital Holography and Three-Dimensional Imaging, Technical Digest (Optical Society of America, 2012), p. DM4C.5.
  27. M. Marim, E. Angelini, J. Olivo-Marin, and M. Atlan, “Off-axis compressed holographic microscopy in low-light conditions,” Opt. Lett. 36, 79–81 (2011). [CrossRef]
  28. J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004(2007). [CrossRef]
  29. D. Claus, D. Iliescu, and P. Bryanston-Cross, “Quantitative space-bandwidth product analysis in digital holography,” Appl. Opt. 50, H116–H127 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited