OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A232–A239

Noise reduction in digital lensless holographic microscopy by engineering the light from a light-emitting diode

Jorge Garcia-Sucerquia  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. A232-A239 (2013)
http://dx.doi.org/10.1364/AO.52.00A232


View Full Text Article

Enhanced HTML    Acrobat PDF (715 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By engineering the light from a light-emitting diode (LED) the noises present in digital lensless holographic microscopy (DLHM) are reduced. The partially coherent light from an LED is tailored to produce a spherical wavefront with limited coherence time and the spatial coherence needed by DLHM to work. DLHM with this engineered light source is used to image biological samples that cover areas of the order of mm2. The ratio between the diameter of the area that is almost coherently illuminated to the diameter of the illumination area is utilized as parameter to quantify the performance of the DLHM with the engineered LED light source. Experimental results show that while the noises can be reduced effectively the spatial resolution can be kept in the micrometer range.

© 2012 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.4280) Coherence and statistical optics : Noise in imaging systems
(030.6140) Coherence and statistical optics : Speckle
(110.0180) Imaging systems : Microscopy
(090.1995) Holography : Digital holography

History
Original Manuscript: August 10, 2012
Revised Manuscript: October 6, 2012
Manuscript Accepted: October 15, 2012
Published: November 27, 2012

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Jorge Garcia-Sucerquia, "Noise reduction in digital lensless holographic microscopy by engineering the light from a light-emitting diode," Appl. Opt. 52, A232-A239 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-A232


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, 1st ed. (Springer, 2011).
  2. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  3. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH Verlag, 2005).
  4. J. Garcia-Sucerquia, W. Xu, P. Klages, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef]
  5. W. Qu, O. C. Chee, Y. Yu, and A. Asundi, “Recording and reconstruction of digital Gabor holograms,” Optik 121, 2179–2184 (2010). [CrossRef]
  6. M. H. Jericho, H. J. Kreuzer, M. Kanka, and R. Riesenberg, “Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy,” Appl. Opt. 51, 1503–1515 (2012). [CrossRef]
  7. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. London A 197, 454–487 (1949). [CrossRef]
  8. M. H. Jericho and H. J. Kreuzer, “Point source digital in-line holographic microscopy,” in Coherent Light Microscopy, P. P. Ferraro, A. Wax, and Z. Zalevsky, eds., Springer Series in Surface Sciences (Springer, 2011), pp. 3–30.
  9. J. Garcia-Sucerquia, D. C. Alvarez-Palacio, and H. J. Kreuzer, “High resolution Talbot self-imaging applied to structural characterization of self-assembled monolayers of microspheres,” Appl. Opt. 47, 4723–4728 (2008). [CrossRef]
  10. S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010). [CrossRef]
  11. S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006). [CrossRef]
  12. M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007). [CrossRef]
  13. J. F. Restrepo and J. Garcia-Sucerquia, “Automatic three-dimensional tracking of particles with high-numerical-aperture digital lensless holographic microscopy,” Opt. Lett. 37, 752–754 (2012). [CrossRef]
  14. D. A. Hincapie, C. Restrepo, H. Casanova, J. Kreuzer, and J. Garcia-Sucerquia, “Colloidal stability evaluation via digital in-line holographic microscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD)(Optical Society of America, 2008), paper DTuC7.
  15. D. C. Alvarez-Palacio and J. Garcia-Sucerquia, “Lensless microscopy technique for static and dynamic colloidal systems,” J. Colloid Interface Sci. 349, 637–640 (2010). [CrossRef]
  16. J. Garcia-Sucerquia, “Color lensless digital holographic microscopy,” Opt. Lett. 37, 1724–1726 (2012). [CrossRef]
  17. J. C. Dainty, ed., Laser Speckle and Related Phenomena (Springer-Verlag, 1984).
  18. H. Meng, W. L. Anderson, F. Hussain, and D. D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. A 10, 2046–2058 (1993). [CrossRef]
  19. P. Petruck, R. Riesenberg, and R. Kowarschik, “Partially coherent light-emitting diode illumination for video-rate in-line holographic microscopy,” Appl. Opt. 51, 2333–2340 (2012). [CrossRef]
  20. P. Petruck, R. Riesenberg, and R. Kowarschik, “Optimized coherence parameters for high-resolution holographic microscopy,” Appl. Phys. B 106, 339–348 (2012). [CrossRef]
  21. A. Siegman, Lasers, 1st ed. (University Science, 1986).
  22. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004). [CrossRef]
  23. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45, 864–871 (2006). [CrossRef]
  24. B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008). [CrossRef]
  25. W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010). [CrossRef]
  26. J. Garcia-Sucerquia, “Partially coherent lensless holographic microscopy with micrometre resolution applied to extended objects,” 3D Res.2, 02002-5 (2011). [CrossRef]
  27. G. Biener, A. Greenbaum, S. O. Isikman, K. Lee, D. Tseng, and A. Ozcan, “Combined reflection and transmission microscope for telemedicine applications in field settings,” Lab Chip 11, 2738–2743 (2011). [CrossRef]
  28. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2002).
  29. U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25, 2459–2466 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited